Online Appendix for "The Supply–Equity Trade-off: The Effect of Spatial Representation on the Local Housing Supply"

Contents

A	Descriptive Statistics	A-2
в	Aggregate Outcomes	A-7
С	Distributive Outcomes C.1 Distributive Standard Errors	A-18 . A-24
D	Data Collection	A-25
	D.1 Aggregate Permits	. A-25
	D.2 Electoral Institutions	. A-25
	D.3 Estimating Candidate Ethnicities	. A-25
	D.4 Interviews with Key CVRA Stakeholders	. A-26
	D.5 Zoning Amendments	. A-28

A Descriptive Statistics

Figure A-1: Proportion of California Cities with District Elections over Time

Figure A-2: Relation of Causally Identified Sample to All California Cities

All California cities N = 482	Cities agreeing to district elections post-CVRA n = 136 Causally identified sample n = 60
-------------------------------------	--

Notes: Rectangle size proportionate to number of cities includes in each group.

Figure A-3: Treatment Status Over Time, Causally Identified Sample

Notes: Cities included here that were not treated over this panel were ultimately treated in 2020. The cities of Eastvale and Jurupa Valley are shown as missing in 2010 and 2010-11, respectively, because they were not yet incorporated in those years.

City	Year	Duarte	2018	Palm Springs	2019
Modesto	2008	El Cajon	2018	Novato	2019
Madera	2012	Encinitas	2018	Antioch	2020
Sanger	2012	Eureka	2018	Apple Valley	2020
Compton	2013	Exeter	2018	Brentwood	2020
Escondido	2014	Fontana	2018	Camarillo	2020
Tulare	2014	Fremont	2018	Campbell	2020
Santa Barbara	2015	Fullerton	2018	Chico	2020
Anaheim	2016	Hesperia	2018	Citrus Heights	2020
Banning	2016	Indio	2018	Claremont	2020
Buena Park	2016	Jurupa Valley	2018	Davis	2020
Chino	2016	Kingsburg	2018	Elk Grove	2020
Chula Vista	2016	Lake Elsinore	2018	Half Moon Bay	2020
Dixon	2016	Lake Forest	2018	Imperial Beach	2020
Eastvale	2016	Lemoore	2018	Lincoln	2020
Garden Grove	2016	Lodi	2018	Livermore	2020
Hemet	2016	Lompoc	2018	Los Alamitos	2020
Highland	2016	Martinez	2018	Marina	2020
King City	2016	Menlo Park	2018	Monterey Park	2020
Los Banos	2016	Morgan Hill	2018	Moorpark	2020
Merced	2016	Murrieta	2018	Napa	2020
Palmdale	2016	Oceanside	2018	Ojai	2020
Patterson	2016	Oxnard	2018	Orange	2020
Riverbank	2016	Placentia	2018	Oroville	2020
S. Juan Capistrano	2016	Poway	2018	Pacifica	2020
Turlock	2016	Rancho Cucamonga	2018	Palm Desert	2020
Visalia	2016	Redlands	2018	Paso Robles	2020
Wildomar	2016	S. Buena(Ventura)	2018	Porterville	2020
Whittier	2016	San Marcos	2018	Redwood City	2020
Woodland	2016	Santa Clara	2018	Richmond	2020
Yucaipa	2016	Santa Maria	2018	Rohnert Park	2020
La Mirada	2017	Santa Rosa	2018	Roseville	2020
Alhambra	2018	Santee	2018	San Rafael	2020
Arcadia	2018	South Pasadena	2018	Santa Ana	2020
Atwater	2018	Stanton	2018	Selma	2020
Barstow	2018	Stockton	2018	Simi Valley	2020
Big Bear Lake	2018	Tehachapi	2018	Solana Beach	2020
Carlsbad	2018	Temecula	2018	S. San Francisco	2020
Cathedral City	2018	Twentynine Palms	2018	Sunnyvale	2020
Ceres	2018	Upland	2018	Torrance	2020
Chino Hills	2018	Vista	2018	Union City	2020
Coalinga	2018	Wasco	2018	Vacaville	2020
Concord	2018	West Covina	2018	Vallejo	2020
Corona	2018	Yucca Valley	2018	Westminster	2020
Costa Mesa	2018	Bellflower	2019	Windsor	2020
Dana Point	2018	Glendora	2019	Goleta	2022

Table A-1: Cities Treated by CVRA and Year of First District Elections; **Bold** Included in Causally Identified Sample

	Mean (Untreated)	Mean (All	Mean (Causally	p-value of difference,	p-value of difference,
		switchers)	identified	all switchers	causal sample
			$\operatorname{sample})$	vs. untreated	vs. untreated
Population					
Number of people	30,258	78,404	102,951	0.00	0.00
Percent non-Hispanic	48	43	36	0.02	0.00
Percent Black	3	5	6	0.01	0.01
Percent Asian	10	11	14	0.25	0.05
Percent Latino	29	29	33	0.89	0.11
Past electoral success					
Prop. of seats w/Latino candidate elected	0.18	0.11	0.09	0.00	0.00
Prop. of seats w/Black candidate elected	0.03	0.03	0.05	0.73	0.32
Prop. of seats w/Asian candidate elected	0.03	0.04	0.04	0.59	0.45
Prop. of seats w/white candidate elected	0.74	0.80	0.77	0.02	0.34
Income and land use					
Median household income (\$)	71,310	66,856	$63,\!859$	0.11	0.02
Median home value (\$)	499,112	412,141	$395,\!692$	0.00	0.00
Home vacancy rate	0.10	0.07	0.07	0.00	0.00
Home ownership rate	0.59	0.59	0.58	1.00	0.42
Density (population per sq. mile)	4,132	4,102	4,599	0.92	0.20
Residential segregation (Theil index)	0.03	0.07	0.08	0.00	0.00
Housing outcomes					
Units permitted annually, single-family	44	83	93	0.00	0.00
Units permitted annually, multifamily	31	63	83	0.00	0.00
N	306	136	60		

Table A-2: Characteristics of Cities in Aggregate Analysis by Type

Table A-3: Characteristics of Cities in Distributive Analysis by Type

	Mean	Mean	p-value of
	(Treatment)	(Control)	difference
Median income	63836	56294	0.00
Median home value	442599	530896	0.00
Home ownership rate	0.45	0.38	0.00
Home vacancy rate	0.07	0.07	0.78
Proportion Black	0.02	0.02	0.11
Proportion non-Hispanic white	0.49	0.69	0.00
Proportion Hispanic	0.35	0.14	0.00

Figure A-4: Distributions of Variables Used to Assess Conditional Effects (Causally Identified Sample)

Notes: Tercile cutpoints are marked in blue. Distributions are defined over the pretreatment values of each variable for cities in the causally identified sample. Assignment to terciles is determined at the city rather than observation level: our measure of segregation is time-invariant and observed pretreatment for all cities; for majority population size, we assign cities to terciles based on average values over their pretreatment panels; and for majority council control, we take each city's value from the year before their first district election, as this already incorporates a twelve-year pretreatment history. Causally identified sample includes the 60 California cities that eventually switched to district elections and that had histories of minority underrepresentation; a minority group constituting at least 20% of the population; and a total population of over 50,000 people.

B Aggregate Outcomes

Figure B-5: Logged Multifamily Units Permitted by Treatment Status and Year Relative to First District Election (Causally Identified Sample)

Figure B-5 (continued): Logged Multifamily Units Permitted by Treatment Status and Year Relative to First District Election (Causally Identified Sample)

Notes: Points represent means of logged multifamily units permitted by treatment status and time relative to the year of a city's first district election (represented by 0 on the x-axis); vertical lines represent 95% confidence intervals. Causally identified sample includes the 60 California cities that eventually switched to district elections and that had histories of minority underrepresentation; a minority group constituting at least 20% of the population; and a total population of over 50,000 people. Treated group consists of the subset of these 60 cities that converted to districts during our panel; control group is constructed of the members of the same sample that were not yet treated at the time.

	Total	Single-Family	Multifamily
	(1)	(2)	(3)
Single-member districts	-0.470	-0.227	-0.805
	(0.255)	(0.236)	(0.459)
Percent non-Hispanic white	0.016	-0.012	0.080
	(0.096)	(0.092)	(0.162)
Percent Black	-0.092	0.110	-0.379
	(0.132)	(0.144)	(0.299)
Percent Hispanic	0.023	0.025	0.051
	(0.080)	(0.086)	(0.171)
Population (thousands)	-0.012	-0.025	-0.055
	(0.078)	(0.080)	(0.103)
Vacancy rate	5.200	6.155	18.206
	(10.607)	(10.666)	(20.706)
Home ownership rate	18.395^{**}	9.107	10.872
	(6.314)	(6.286)	(8.841)
Median home value (thousands)	0.004	0.007	-0.010
	(0.006)	(0.004)	(0.008)
Median income (thousands)	-0.014	-0.032	0.024
	(0.055)	(0.038)	(0.074)
Past minority representation	0.333	0.601	1.549
	(1.485)	(1.302)	(2.732)
City FE	Yes	Yes	Yes
Year FE	Yes	Yes	Yes
City-specific Trends	Yes	Yes	Yes
Observations	597	597	597
\mathbb{R}^2	0.679	0.751	0.573

Table B-4: Effect of Conversion to Single-Member Districts on Logged Units Permitted, By Housing Type (Causally Identified Sample)

=

	(1)	(2)	(3)	(4)	(5)
Single-member districts	0.105	-0.816	-1.183^{**}	-1.036^{*}	-0.533
-	(0.456)	(0.448)	(0.448)	(0.426)	(0.314)
SMD*Low segregation	-0.119	0.302	0.406	0.541	-0.792
	(0.713)	(0.481)	(0.481)	(0.572)	(0.718)
Population (thousands)				0.101	
				(0.064)	
Vacancy rate				27.175	29.669^{*}
				(15.428)	(14.580)
Home ownership rate				14.567	5.975
				(9.525)	(8.124)
Median home value (thousands)				-0.007	-0.0002
				(0.007)	(0.014)
Median income (thousands)				0.009	-0.086
				(0.078)	(0.085)
Past minority representation				-0.683	-3.483
				(2.371)	(3.343)
City FE	No	Yes	Yes	Yes	Yes
Year FE	No	Yes	Yes	Yes	Yes
City-specific Trends	No	No	Yes	No	Yes
Observations	399	399	399	399	360
\mathbb{R}^2	0.0003	0.450	0.549	0.471	0.475

Table B-5: Effect of Conversion to Single-Member Districts on Logged Multifamily Units Permitted, Interacted with Segregation (Causally Identified Sample), Robustness to Alternative Specifications

	(1)	(2)	(3)	(4)	(5)
Single-member districts	0.029	-0.925^{*}	-1.420^{**}	-1.101^{**}	-0.747^{*}
0	(0.501)	(0.445)	(0.445)	(0.347)	(0.330)
SMD*High majority population	0.293	0.808	0.548	0.805	0.064
	(0.707)	(0.420)	(0.420)	(0.429)	(0.360)
Population (thousands)				0.088	
				(0.060)	
Vacancy rate				25.965	11.079
				(15.424)	(16.685)
Home ownership rate				5.016	12.021
				(7.529)	(7.209)
Median home value (thousands)				-0.011	0.005
				(0.006)	(0.006)
Median income (thousands)				-0.013	-0.100
				(0.068)	(0.058)
Past minority representation				-0.741	-2.722
				(1.943)	(2.510)
City FE	No	Yes	Yes	Yes	Yes
Year FE	No	Yes	Yes	Yes	Yes
City-specific Trends	No	No	Yes	No	Yes
Observations	397	397	397	397	358
\mathbb{R}^2	0.002	0.507	0.603	0.524	0.484

Table B-6: Effect of Conversion to Single-Member Districts on Logged Multifamily Units Permitted, Interacted with Majority Population (Causally Identified Sample), Robustness to Alternative Model Specifications

	(1)	(2)	(3)	(4)	(5)
Single-member districts	0.158	-0.655	-1.303^{**}	-0.767	-1.360^{*}
	(0.533)	(0.460)	(0.460)	(0.442)	(0.610)
SMD*Low majority control	0.185	0.534	0.544	0.497	0.969
	(0.781)	(0.509)	(0.509)	(0.559)	(0.747)
Population (thousands)	. ,	. ,		0.088	. ,
				(0.058)	
Vacancy rate				27.737	8.977
				(15.904)	(17.507)
Home ownership rate				4.130	14.811
				(7.370)	(8.300)
Median home value (thousands)				-0.009	-0.001
				(0.005)	(0.014)
Median income (thousands)				0.036	-0.093
				(0.061)	(0.082)
Past minority representation				-0.590	-3.325
				(1.708)	(2.870)
City FE	No	Yes	Yes	Yes	Yes
Year FE	No	Yes	Yes	Yes	Yes
City-specific Trends	No	No	Yes	No	Yes
Observations	397	397	397	397	358
\mathbb{R}^2	0.002	0.525	0.607	0.538	0.488

Table B-7: Effect of Conversion to Single-Member Districts on Logged Multifamily Units Permitted, Interacted with Majority Control (Causally Identified Sample), Robustness to Alternative Specifications

	H1	H2	<i>H3</i>	H4
	(1)	(2)	(3)	(4)
Single-member districts	-0.559	-0.533	-0.747^{*}	-1.360^{*}
	(0.291)	(0.314)	(0.330)	(0.610)
SMD*Low segregation		-0.792		
		(0.718)		
SMD*High majority population			0.064	
			(0.360)	
SMD*Low majority control				0.969
				(0.747)
Percent non-Hispanic white	-0.042			
	(0.169)			
Percent Black	0.0004			
	(0.225)			
Percent Hispanic	-0.049			
	(0.182)			
Vacancy rate	5.429	29.669^{*}	11.079	8.977
	(13.358)	(14.580)	(16.685)	(17.507)
Home ownership rate	11.768	5.975	12.021	14.811
	(7.632)	(8.124)	(7.209)	(8.300)
Median home value (thousands)	-0.0002	-0.0002	0.005	-0.001
	(0.010)	(0.014)	(0.006)	(0.014)
Median income (thousands)	-0.062	-0.086	-0.100	-0.093
	(0.068)	(0.085)	(0.058)	(0.082)
Past minority representation	-1.594	-3.483	-2.722	-3.325
	(2.822)	(3.343)	(2.510)	(2.870)
City FE	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes
City-specific Trends	Yes	Yes	Yes	Yes
Observations	538	360	358	358
\mathbb{R}^2	0.471	0.475	0.484	0.488

Table B-8: Effect of Conversion to Single-Member Districts on Multifamily Units Permitted Scaled by Lagged Population, Interacted with City Characteristics (Causally Identified Sample)

Notes: *p<0.05; **p<0.01; ***p<0.001. Causally identified sample includes the 60 California cities that eventually switched to district elections and that had histories of minority underrepresentation; a minority group constituting at least 20% of the population; and a total population of over 50,000 people. Column 1 (*H1*) includes entire causally identified sample; columns 2-4 include the top and bottom terciles within the causally identified sample of, respectively, segregation (*H2*); size of racial majority (*H3*); and majority group representation on council (*H4*).

	H1	H2	H3	H4
	(1)	(2)	(3)	(4)
Single-member districts	-0.113	-0.244^{*}	-0.215^{*}	-0.129
<u> </u>	(0.087)	(0.117)	(0.097)	(0.109)
SMD*Low segregation		0.188		
		(0.176)		
SMD*High majority population			0.034	
			(0.136)	
SMD*Low majority control			× ,	-0.017
				(0.176)
Percent non-Hispanic white	0.035			
	(0.037)			
Percent Black	-0.099			
	(0.063)			
Percent Hispanic	0.022			
	(0.043)			
Population (thousands)	0.002	-0.001	0.005	0.005
	(0.020)	(0.024)	(0.019)	(0.019)
Vacancy rate	3.627	5.805	9.100	5.524
	(4.967)	(6.186)	(5.760)	(6.610)
Home ownership rate	-0.318	1.851	-2.556	-1.132
	(2.218)	(2.788)	(2.383)	(2.976)
Median home value (thousands)	-0.003	-0.002	-0.003	-0.004^{*}
	(0.002)	(0.002)	(0.003)	(0.002)
Median income (thousands)	0.022	0.016	0.019	0.022
	(0.016)	(0.020)	(0.019)	(0.018)
Past minority representation	0.708	0.302	1.023	0.844
	(0.570)	(0.652)	(0.545)	(0.508)
City FE	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes
City-specific Trends	Yes	Yes	Yes	Yes
Observations	597	399	397	397
\mathbb{R}^2	0.534	0.539	0.593	0.583

Table B-9: Effect of Conversion to Single-Member Districts on Binary Outcome (Any Multifamily Units Permitted = 1), Interacted with City Characteristics (Causally Identified Sample)

Notes: *p<0.05; **p<0.01; ***p<0.001. Causally identified sample includes the 60 California cities that eventually switched to district elections and that had histories of minority underrepresentation; a minority group constituting at least 20% of the population; and a total population of over 50,000 people. Column 1 (H1) includes entire causally identified sample; columns 2-4 include the top and bottom terciles within the causally identified sample of, respectively, segregation (H2); size of racial majority (H3); and majority group representation on council (H4).

Figure B-7: Event Study Plots of Treatment Effects and Confidence Intervals (Causally Identified Sample)

(c) Top Majority Control Tercile

Notes: Point estimates from Granger test, conducted on relevant terciles within the causally identified sample. This sample includes the 60 California cities that eventually switched to district elections and that had histories of minority underrepresentation; a minority group constituting at least 20% of the population; and a total population of over 50,000 people. Lines indicate 95% confidence intervals (thin lines) and 90% confidence intervals (thick lines).

Figure B-8: Effect of Conversion to Single-Member Districts on Logged Multifamily Units Permitted, Estimated Using Fixed Effects Counterfactual Estimator (Liu, Wang, and Xu 2020) (Causally Identified Sample)

Notes: Estimated treatment effects and 95% confidence intervals, conducted on relevant terciles within the causally identified sample. This sample includes the 60 California cities that eventually switched to district elections and that had histories of minority underrepresentation; a minority group constituting at least 20% of the population; and a total population of over 50,000 people.

Figure B-9: Goodman-Bacon Decomposition of the Effect of Single-Member Districts on Logged Multifamily Units Permitted (Causally Identified Sample)

Notes: Models in each panel are equivalent to a fully interacted version of Table 2, where the treatment effect on which we conduct the Goodman-Bacon decomposition corresponds to the effect reported under "Singlemember districts." Each point represents one of the difference-in-differences comparisons that constitute the overall two-way fixed effects estimate, with the weight assigned to that estimate on the x-axis. Causally identified sample includes the 60 California cities that eventually switched to district elections and that had histories of minority underrepresentation; a minority group constituting at least 20% of the population; and a total population of over 50,000 people.

C Distributive Outcomes

Figure C-10: Difference in Logged Total Units Approved (High Minority Block Groups Minus Low Minority Block Groups), by Treatment Status and Year Relative to First District Election (Case Study Sample)

Notes: Points represent means of the difference between logged total units approved in minority and white block groups, by treatment status and time relative to the year of a city's first district election (represented by 0 on the x-axis); vertical lines represent 95% confidence intervals. Case study sample includes Santa Barbara, Escondido, and Anaheim (treated) and Santa Cruz, Ventura, and Glendale (control).

	(1)	(2)	(3)	(4)	(5)
Single-member districts	0.040	0.160	0.059	0.179	0.210
	p = 0.749	p = 0.300	p = 0.761	p = 0.334	p = 0.126
Minority block groups	0.387	0.387	0.387	0.312	0.311
	$p = 0.000^{***}$				
SMD*Minority block groups	-0.377	-0.377	-0.377	-0.425	-0.424
	$p = 0.000^{***}$				
Controls	No	No	No	Yes	Yes
City FE	No	Yes	Yes	Yes	Yes
Year FE	No	Yes	Yes	Yes	Yes
City Trends	No	No	Yes	No	Yes
Observations	1,184	$1,\!184$	1,184	1,184	$1,\!184$

Table C-10: Effect of Conversion to Single-Member Districts on Logged Total Units Approved (Case Study Sample)

Notes: p<0.05; p<0.01; p<0.01; p<0.001. Case study sample includes Santa Barbara, Escondido, and Anaheim (treated) and Santa Cruz, Ventura, and Glendale (control).

Table C-11: Effect of Conversion to Single-Member Districts on Logged Total Units Approved, Robustness to Exclusion of One City (Case Study Sample)

	Full	No Anaheim	No Escondido	No Glendale
	(1)	(2)	(3)	(4)
Single-member districts	0.210	0.115	0.065	0.222
	p = 0.126	p = 0.132	p = 0.494	p = 0.205
Minority block groups	0.311	0.326	0.318	0.352
	$p = 0.000^{***}$	$p = 0.000^{***}$	$p = 0.000^{***}$	$p = 0.000^{***}$
SMD*Minority block groups	-0.424	-0.500	-0.403	-0.334
	$p = 0.000^{***}$	$p = 0.000^{***}$	$p = 0.000^{***}$	$p = 0.000^{***}$
Controls	Yes	Yes	Yes	Yes
City FE	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes
City Trends	Yes	Yes	Yes	Yes
Observations	$1,\!184$	832	1,040	1,008

	Full	No Santa Barbara	No Santa Cruz	No Ventura
	(1)	(2)	(3)	(4)
Single-member districts	0.210	0.234	0.281	0.252
	p = 0.126	p = 0.583	p = 0.126	p = 0.189
Minority block groups	0.311	0.301	0.338	0.268
	$p = 0.000^{***}$	$p = 0.000^{***}$	$p = 0.000^{***}$	$p = 0.000^{***}$
SMD*Minority block groups	-0.424	-0.426	-0.432	-0.431
	$p = 0.000^{***}$	p = 0.249	$p = 0.000^{***}$	$p = 0.000^{***}$
Controls	Yes	Yes	Yes	Yes
City FE	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes
City Trends	Yes	Yes	Yes	Yes
Observations	1,184	928	1,072	1,040

Notes: p<0.05; p<0.01; p<0.01; p<0.01. Case study sample includes Santa Barbara, Escondido, and Anaheim (treated) and Santa Cruz, Ventura, and Glendale (control).

Figure C-11: Logged Total Units Approved, by Block Group Composition (Minority or White) and Year Relative to First District Election (Case Study Sample)

Notes: Dotted vertical lines represent year of first district elections for treated cities. "White" and "minority" block groups are defined as being in the top and bottom terciles of percent non-Hispanic white in each city prior to treatment; block groups belonging to the middle tercile are not shown.

Table C-12: Effect of Conversion to Single-Member Districts on Logged Units Approved Terciles Defined Over All Treated Cities (Case Study Sample) (Minority block groups: less than 38 percent white, white block groups: more than 67 percent white)

	Total Units	Multifamily Units	Single-family units
	(1)	(2)	(3)
Single-member districts	0.392	0.254	0.117
	p = 0.176	p = 0.316	p = 0.623
Minority block groups	0.365	0.393	0.048
	p = 0.097	p = 0.134	p = 0.761
SMD*Minority block groups	-0.546	-0.491	-0.120
	$p = 0.000^{***}$	$p = 0.000^{***}$	p = 0.496
Controls	Yes	Yes	Yes
City FE	Yes	Yes	Yes
Year FE	Yes	Yes	Yes
City Trends	Yes	Yes	Yes
Observations	$1,\!136$	1,136	1,136

Notes: p<0.05; p<0.01; p<0.01; p<0.01. Case study sample includes Santa Barbara, Escondido, and Anaheim (treated) and Santa Cruz, Ventura, and Glendale (control).

Figure C-12: Event Study Plot of Spatial Diff-in-Diff Interaction (Case Study Sample)

Notes: Point estimates from Granger test, conducted on case study sample. This sample includes Santa Barbara, Escondido, and Anaheim (treated) and Santa Cruz, Ventura, and Glendale (control). Lines indicate 95% confidence intervals (thin lines) and 90% confidence intervals (thick lines). Baseline year is set to t-3 so that every treated city has at least one pretreatment year.

C.1 Distributive Standard Errors

The wild cluster bootstrap algorithm does not produce standard errors, so we only report p-values in Table 3. Although one could compute the standard deviation of the bootstrap distribution of the estimate, doing any kind of inference using this quantity relies heavily on an asymptotic normality assumption that is unlikely to hold when the number of clusters is small (Roodman et al. 2019). While there is not a correct approach for inference with a small number of clusters, Appendix Table C-13 shows that the patterns of statistical significance are identical whether we use the wild bootstrap, block cluster bootstrap (Bertrand, Duflo, and Mullainathan 2004), or conventional cluster-robust standard errors.

Table C-13: Effect of Conversion to Single-Member Districts on Logged Units Approved, Alternative Clustering Approaches (Case Study Sample)

	Total Units	Multifamily Units	Single-family units
	(1)	(2)	(3)
Single-member districts	0.210	0.124	0.083
Wild Bootstrap	p = 0.126	p = 0.161	p = 0.444
$Block \ Bootstrap$	p = 0.168	p = 0.304	p = 0.242
Cluster Robust SEs	p = 0.107	p = 0.212	p = 0.199
Minority block groups	0.311	0.370	-0.033
Wild Bootstrap	$p = 0.000^{***}$	$p = 0.040^{*}$	p = 0.521
$Block \ Bootstrap$	$p = 0.006^{**}$	$p = 0.000^{***}$	p = 0.186
Cluster Robust SEs	$p = 0.000^{***}$	$p = 0.000^{***}$	p = 0.324
SMD*Minority block groups	-0.424	-0.358	-0.097
Wild Bootstrap	$p = 0.000^{***}$	$p = 0.000^{***}$	p = 0.292
$Block \ Bootstrap$	$p = 0.006^{**}$	$p = 0.000^{***}$	p = 0.112
Cluster Robust SEs	$p = 0.000^{***}$	$p = 0.001^{**}$	p = 0.151
Controls	Yes	Yes	Yes
City FE	Yes	Yes	Yes
Year FE	Yes	Yes	Yes
City Trends	Yes	Yes	Yes
Observations	1,184	1,184	1,184

Notes: p<0.05; p<0.01; p<0.01; p<0.001. Case study sample includes Santa Barbara, Escondido, and Anaheim (treated) and Santa Cruz, Ventura, and Glendale (control).

D Data Collection

D.1 Aggregate Permits

The Census Bureau's Building Permits Survey is the leading source of cross-municipality data on housing permits, surveying the over 20,000 local governments which permit 98% of US housing production. On average, 94% of units permitted are eventually completed, with the decrease in units stemming from design changes or permits abandoned (*Data Relationships between Permits, Starts, and Completions* 2020). Our dependent variable is units permitted because permitting is a political decision, whereas building completions are affected by exogenous factors such as internal financing. Of note, the number of observations in our panel models falls below 600 and 400 because two of the cities in our causally identified sample were incorporated early in the panel. Eastvale was incorporated in 2010 and entered our panel in 2011. Jurupa Valley was incorporated in 2011 and entered our panel in 2012.

D.2 Electoral Institutions

We assembled an original panel dataset of city council structures from 2010 through the present for the 482 Census-designated places in California. We began by coding all of these cities as at-large, except for the 59 cities identified by California Common Cause to be by-district as of 2016 (https://www.commoncause.org/california/wp-content/ uploads/sites/29/2018/03/california-municipal.pdf). For each of these cities, we used internet searches to learn the year of their first district election. To find all subsequent conversions to districts under the CVRA, we used a combination of internet searches, city that converted, we collected the following information:

- Year of decision to convert
- Year of first district election
- Reason for conversion (lawsuit, threat letter)
- Method of conversion (court order, council resolution, or ballot initiative)
- Plaintiff/source of threat letter

D.3 Estimating Candidate Ethnicities

CEDA's data only includes names, not ethnicities, of candidates, so we coded the ethnicity of candidates using the wru package in R (Imai and Khanna 2021). This package uses data from the U.S. Census to compute the probability that a person is of a given ethnicity given their last name and county of residence. Similar prediction procedures are known to have higher error rates for women and Blacks, but this should not pose a major issue for our analysis. Latinos and Asians constitute the vast majority of the nonwhite population across most cities in our sample. As for women, Imai and Khanna (2016) point out that their method is biased only if surname is correlated with location or personal attributes, including the rate of interracial marriage and the likelihood of changing one's last name after marriage. For instance, as long as white and nonwhite women are equally likely to marry someone of a different ethnicity, and to change their last names when doing so, the misclassification of white women as nonwhite and vice-versa should only introduce random noise, but no bias, into our coding of city council members' ethnicities.

D.4 Interviews with Key CVRA Stakeholders

We conducted a site visit to Southern California in January 2020 to talk to key stakeholders in CVRA litigation, local government, and housing politics. Their names, locations, and titles are given in Table D-14.

Excerpts from Conversation with Thomas Saenz, President and General Counsel of MALDEF (January 13, 2020)

What informed your selection of cities in which to pursue legal action under the CVRA? "There's no hard and fast rule, but we had to use some general criteria that include size of the jurisdiction and our ability to draw a majority Latino district. We have generally not challenged anyone under 25,000 in population, and our goal has been to focus on those that are over 50,000 in population. I think there are circumstances that apply in smaller jurisdictions that don't necessarily apply in larger jurisdictions. In small jurisdictions — and this is my personal view — there is a greater justification for an at-large system. If a city's so small that you don't see the distinction between neighborhoods that you see in larger jurisdictions, where the wealthier neighborhood ends up, wholly apart from race, having all the city council or governing body coming from one neighborhood — that's a little bit less likely to occur when it's a much smaller jurisdiction. We have also insisted on the ability to draw a Latino majority CVAP (Citizen Voting Age Population) district — a compact district, we're not going to pursue something where you can only draw a Latino district with spindles in different directions...We also look at electoral history. If there have been Latinos consistently elected, we won't even do an RPV (racially polarized voting) analysis and we will forego that jurisdiction for the moment."

Why did it take a couple years since the passage of the CVRA to see litigation take off? "I can only speak for MALDEF: things were going on that kept us very busy in the early years. Then I left, and litigation was more or less consciously downplayed by the leadership at the time, first for philosophical reasons, and ultimately for a mix of philosophical and financial reasons. I came back in 2009 and it took a little time to get a system up and running, but now we have a very good, comprehensive system to identify jurisdictions and move forward in systematically challenging at-large systems at the local level."

Name	City	Position
City Council		
Jose Moreno	Anaheim	City council member
Denise Barnes	Anaheim	City council member
Danny Fierro	Anaheim	Policy side to city council
Damiy Fierro	Ananenn	member Jordan Brandman
Crant Honningor	Anshoim	Candidata for city council
Paul McNamara	Escondido	City council member and
i aui mervaillara	Escondido	current mayor
Consuelo Martinez	Escondido	City council member
Olga Diaz	Escondido	City council member
Ardy Kagaakhian	Clondala	City council member
Aruy Kassakinan	Clendale	City council member and
Ala Najallali	Gielidale	City council member and
Miles war Candon	Clandala	Condidate for site council
Mike van Gorder		
Maegan Harmon	Santa Barbara	City council member
Uscar Gutierrez	Santa Barbara	City council member
Kristen Sneddon	Santa Barbara	City council member
Eric Friedman	Santa Barbara	City council member
Jeanette Sanchez-Palacio	Ventura	Candidate for city council
Planning Commissioners	and Urban Planne	ars
Steve White	Anaheim	Planning Commission member
John Armstrong	Anaheim	Planning Commission member
Mike Strong	Escondido	Planning Commission member
Ieffrey Lambert	Ventura	Planning Commission member
Alex McIntyre	Ventura	City Manager
Sandy Smith	Ventura	Former Mayor and Land Use
Sandy Sinten	Ventura	Consultant Sespe Consulting
John Hecht	Ventura	Land Use Consultant, Sespe
John Heent	Ventura	Consulting
Shino Ling	Los Angolos*	Urban Planner
Sinne Ling	Los Aligeles	Orban Flanner
Plaintiffs and Lawyers In	volved in CVRA I	Litigation
Thomas Saenz	Los Angeles	President and General
	0	Counsel, MALDEF
Lydia Camarillo	San Antonio, TX*	President, SVREP
Kevin Shenkman	Malibu*	Attorney for several CVRA plaintiffs
		& threat letters
Sebastian Aldana .Ir	Santa Barbara	Plaintiff CVRA lawsuit
		against City of Santa Barbara
Frank Banales	Santa Barbara	Plaintiff CVBA lawsuit
Frank Danatos		against City of Santa Barbara
Barry Capello	Santa Barbara	Attorney for plaintiffs CVRA laweuit
Daily Capello	Santa Darvara	against City of Santa Barbara

Table D-14: Stakeholders Interviewed During Site Visit to Southern California, January 2020

* Conversation conducted by phone.

Name	City	Position	
Community Organizers, Activists, and Interest Groups			
Ada Briceño	Anaheim	Labor leader/Chair, Democratic	
		Party of Orange County	
Catherine Jurca	Glendale	Member, Glendale Historical	
		Society Board of Directors	
Lee Moldaver	Santa Barbara	Board Member, Citizens Planning	
		Association of Santa Barbara County	
Vijaya Jammalamadaka	Santa Barbara	President, League of Women	
		Voters of Santa Barbara	
Pedro Paz	Santa Barbara	Board Member, The Fund for	
		Santa Barbara	
Anna Marie Gott	Santa Barbara	Local Activist	
Lucas Zucker	Ventura	Policy and Communications Director,	
		CAUSE	
Writers and Journalists			
Spencer Custodio	Anaheim	Reporter, Voice of OC	
Bill Fulton	Ventura	Urban planner and former mayor	
		of Ventura, CA	

D.5 Zoning Amendments

To geocode increases in buildable capacity within cities, we reviewed the meeting minutes of the two bodies which control the discretionary review of new housing proposals: the planning commission and city council. We begin with minutes from 2011, as Census block group boundaries will be stable post-2010. This allows enough time to establish pre-trends within our treated cities. For each proposal, we recorded the street address, total units, and the divide of units between single-family and multifamily housing.

As political outcomes, our goal was to identify the year the proposal emerged from the discretionary process. This year may be different from the year of construction and even different from the year of the final permit, as the final permit may rely on a back and forth the discretionary body about design details even after the number of units has been approved. To identify this year of final discretionary review, we first check if the city council voted on the project. Any lower board decisions can be appealed to city council, meaning the voice of the city council is the most important discretionary hurdle. If city council does vote on the project, we use the year of the city council vote. If city council does not vote on the project, we used the year of the last density-based discretionary approval by the planning commission.

Occasionally, a city will make a change to their overall zoning code by amending the General Plan. Such changes affect a swath of the city, potentially many neighborhoods and thousands of individual parcels. While these zoning changes (or "rezonings") may not become reality until a decade into the future, they are politically meaningful increase in the

capacity to build by-right. As a result, we code each rezoning by its increase in buildable capacity. Because the overlap between block groups and upzoned neighborhoods is not perfect, this process involves discretion in allocating upzoned units across multiple block groups. Still, we believe we have generated the most accurate multi-city representation of changes in allowable density over the past 8 years.

There are several types of residential proposals we do not include. First, we do not collect data on renovations nor conversions of apartments to condominiums. The legalization of existing illegal units is coded, as legalization is similar enough to building a new unit. Additionally, we include proposals by commercial enterprises seeking to designate part of their existing structure as residential. Finally, we do not collect data on permits approved by the staff of the city's planning division. These projects are less vulnerable to discretionary approval and often are only reviewed for conformance with existing code.

Ultimately, the data we collect represent the corpus of permits that were approved by passing through the political gauntlet of discretionary review. These data capture the output of permits that should be most directly affected by the change in representation from district elections.