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A. Proofs

LEMMA 1: The Borda score of each profile is equal to the total number of times that profile is chosen

in all pairwise comparisons.

Proof of Lemma 1. Suppose there are N voters and K profiles. Consider voter i’s preference ranking

over profiles. For any pair of profiles xj , xk, denote by Yi(xj , xk) = 1 if i chooses profile xj over xk in

a pairwise comparison, and Yi(xj , xk) = 0 otherwise. Without loss of generality, reorder the profiles

such that the profile most preferred by i is x1, the second most preferred is x2, and so on such that

the least preferred is xK . Assign i’s most preferred profile a Borda score of bi(x1) = K � 1, their

second most preferred profile a score of bi(x2) = K � 2, and so on such that their least preferred

profile has a score of zero. Suppose now i is presented with each pairwise comparison. Then, i

chooses their most preferred profile x1 every time it is on the ballot, against every other profile, so

X

j 6=1

Yi(x1, xj) = 1 + 1 + 1 + ...+ 1| {z }
K�1 times

= K � 1
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times. The second most preferred will be chosen every time except when compared with the most

preferred profile, so
X

j 6=2

Yi(x2, xj) = 0 + 1 + 1 + 1 + ...+ 1| {z }
K�2 times

= K � 2

times. Going this way, we see that individual Borda scores over profiles match exactly with the

number of times each profile is chosen when every pairwise comparison is made. Finally, the least

preferred profile will never be chosen in a pairwise comparison made by voter i,
P
j 6=K

Yi(xK , xj) =

0+0+0+...+0 = 0. Thus, for each individual voter, the Borda score of a profile is equal to the number

of times it is chosen when that voter makes all pairwise comparisons, bi(xm) =
P
j 6=m

Yi(xm, xj).

The aggregate Borda score of a profile is the sum of individual voters’ Borda scores of that profile.

When we sum across voters the times each profile xm is chosen in all pairwise comparisons, their

sums must be equal to the sum of individual Borda scores. Formally,

b(xm) ⌘
NX

i=1

bi(xm) =
NX

i=1

X

j 6=m

Yi(xm, xj).

Lemma 2. With separable preferences and binary attributes, a profile has the highest Borda score

if and only if all its features have the highest Borda scores for their respective attributes.

Proof of Lemma 2. Let us first restate the formal definition of separability. Voter i’s choices are

separable when for all t1 and t0, we have

Yi
�
(t1, T[�l]), (t0, T[�l])

�
= Yi

⇣
(t1, T

0
[�l]), (t0, T

0
[�l])

⌘

where T[�l] and T
0
[�l] denote two arbitrary vectors of other treatment components.

Formally, Borda score of a feature t1, B(t1) is

B(t1) ⌘
NX

i=1

X

x12(t1)

X

xj 6=x1

Yi(x1, xj)

where (t1) denotes the set of all profiles that have the feature t1. Separability implies

bi(t1, T[�l])� bi(t1, T
0
[�l]) = bi(t0, T[�l])� bi(t0, T

0
[�l])
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for all t1, t0, T[�l], and T
0
[�l] by a straightforward application of Lemma 1. Summing these up

NX

i=1

bi(t1, T[�l])�
NX

i=1

bi(t0, T[�l]) =
NX

i=1

bi(t1, T
0
[�l])�

NX

i=1

bi(t0, T
0
[�l]).

Suppose now (t1, T ⇤
[�l]) is the profile with the highest Borda score. This means:

NX

i=1

bi(t1, T
⇤
[�l])�

NX

i=1

bi(t0, T
⇤
[�l]) � 0.

By the separability assumption, it follows that for any arbitrary vector of treatments T[�l]:

NX

i=1

bi(t1, T[�l])�
NX

i=1

bi(t0, T[�l]) � 0

Because this is true for each vector of treatments T[�l], it is also true when we sum over them and

get the Borda score of t1. Therefore, the Borda score of t1 must be greater than that of t0 because

B(t1) =
X

T[�l]

NX

i=1

bi(t1, T[�l]) �
X

T[�l]

NX

i=1

bi(t0, T[�l]) = B(t0).

PROPOSITION 1: The di↵erence of the Borda scores of two features is proportional to the AMCE.

Proof of Proposition 1. The number of profiles that have t1 is equal to the number of profiles that

have t0, which is in turn equal to the total number of profiles divided by the number of unique values

the attribute of interest can take: |(t1)| = |(t0)| = K
⌧ . Then, by dividing the Borda score of a

feature, B(t1) by the total number of pairwise comparisons t1 appears in, K
⌧ NK, and taking the

di↵erence with the Borda score B(t0) of the baseline feature t0, divided by K
⌧ NK yields exactly the

AMCE of t1 as defined in Hainmueller, Hopkins and Yamamoto (2014):

⇡(t1, t0) =

NP
i=1

P
x2(t1)

P
xj 6=x

Yi(x, xj)

|(t1)|NK
�

NP
i=1

P
x2(t0)

P
xj 6=x

Yi(x, xj)

|(t0)|NK
=

⌧

NK2
(B(t1)�B(t0)) .
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PROPOSITION 2: Let y denote the fraction of voters who prefer t1 over t0. Given an AMCE of

⇡(t1, t0), it must be that

y 2

max

⇢
⇡(t1, t0)⌧K + ⌧

K(⌧ � 1) + ⌧
, 0

�
,min

⇢
⇡(t1, t0)⌧K +K(⌧ � 1)

K(⌧ � 1) + ⌧
, 1

��

where ⌧ is the number of distinct values the attribute of interest can take.

Proof of Proposition 2. We prove this proposition by finding the range of Borda scores of t1 and

t0 that can be rationalized for a given proportion of respondents who prefer t1 over t0; and then

inverting this range to find the minimum and maximum proportions of respondents who prefer t1

over t0 for a given AMCE.

Let us find the minimum fraction of respondents who prefer t1 over t0 that is consistent with an

AMCE. Notice that for a fixed fraction of respondents, the AMCE is maximized when respondents

in favor of t1 assign the highest priority to the attribute, they rank t1 the best, and t0 the worst;

whereas those who prefer t0 like t1 next, and assign the lowest priority to it. In other words, when

those who prefer t1 rank all profiles with t1 at the top, and all profiles with t0 at the bottom, this

drives the AMCE up. To help with the intuition, the preferences of such a voter might look like:

t1↵��| {z }
K�1

� t1↵
0
��| {z }

K�2

� . . . � t1↵
0
�
0
�
0

| {z }
K�K

⌧

� t2↵�� � . . . � t2↵
0
�
0
�
0 � . . . � t0↵��| {z }

K
⌧ �1

� t0↵
0
��| {z }

K
⌧ �2

� . . . � t0↵
0
�
0
�
0

| {z }
0

where ↵, �, and � represent a collection of other features of candidates included in the experiment.

Holding constant the other features, the di↵erence in Borda scores of a profile with t1 and with t0

is thus K � K
⌧ . Formally, for any vector of other attributes T[�l], the profile (t1, T[�l]) is maximally

chosenK�K
⌧ more times than (t0, T[�l]) when every pairwise comparison is made. From Proposition 1

we know that this implies the maximum di↵erence in Borda scores, bi(t1, T[�l]) � bi(t0, T[�l]) =

K� K
⌧ , for any arbitrary combination of other attributes, T[�l]. Because there are

K
⌧ possible unique

combinations of other attributes, each respondent makes K
⌧ such comparisons between t1 and t0.

Thus, each respondent who prefers t1 maximally generates a K2(⌧�1)
⌧2 higher Borda score for t1 than

t0.

Similarly, the maximum AMCE is only obtained when those who prefer t0 assign the lowest

priority to this attribute, and rank profiles with t1 just below otherwise identical profiles with t0.
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Such preferences might look like:

t0↵��| {z }
K�1

� t1↵��| {z }
K�2

� t2↵�� � . . . � t0↵
0
��| {z }

K�⌧�1

� t1↵
0
��| {z }

K�⌧�2

� . . . � t0↵
0
�
0
�
0

| {z }
⌧�1

� t1↵
0
�
0
�
0

| {z }
⌧�2

� t2↵
0
�
0
�
0 � . . .

When other features are held constant, the di↵erence in Borda scores of a profile with t1 and t0 is

�1. In other words, for respondents who prefer t0 to t1, the maximum di↵erence is bj(t1, T[�l]) �

bj(t0, T[�l]) = �1, for any arbitrary combination of other attributes, T[�l]. Again, because there are

K
⌧ possible combinations of other features and thus as many comparisons between profiles with t1

and t0, each respondent who prefers t0 minimally generates K
⌧ more points for t0 than t1.

Thus, for a given AMCE ⇡(t1, t0), we can derive the minimum fraction y of voters who prefer t1,

y
min, by summing these scores and normalizing:

⇡(t1, t0) =
(ymin)K

2(⌧�1)
⌧2 � (1� y

min)K⌧
K2

⌧

.

Simple algebra reveals

y
min = max

⇢
⇡(t1, t0)⌧K + ⌧

K(⌧ � 1) + ⌧
, 0

�
.

A very similar argument establishes the upper bound of y.

PROPOSITION 3: When the direction and intensity of preferences across respondents are un-

correlated, the AMCE of a binary attribute has the same sign as the majority preference, but

underestimates the size of the margin.

Proof of Proposition 3. Denote by n1 the number of respondents who prefer t1 to t0. Similarly, let

n0 = N � n1 refer to the number of respondents who prefer t0 to t1. Without loss of generality,

reorder respondents so those who prefer t1 to t0 have the lowest rank, that is i 2 {1, . . . , n1}. Suppose

direction and intensity of preferences are uncorrelated across respondents. Then, the average net

contribution to t1 from a supporter of t1 is the same as the average net contribution to t0 from an

opponent of t1. Formally, we can write this as

(A1)
1

n1

n1X

i=1

Bi(t1)�Bi(t0) =
1

n0

NX

i=n1+1

Bi(t0)�Bi(t1).

for any t1, t0, and i.
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We know from the proof of Proposition 1 that we can write the AMCE as:

(A2) ⇡(t1, t0) =
⌧

NK2

NX

i=1

Bi(t1)�Bi(t0).

Then, we can rewrite expression A2 as

⇡(t1, t0) =
⌧

NK2

 
n1X

i=1

Bi(t1)�Bi(t0)�
NX

i=n1+1

Bi(t0)�Bi(t1)

!

From Equation A1, when preference direction and intensity are uncorrelated:

⇡(t1, t0) =
⌧ Ein1 [B(t1)�B(t0)]

NK2
(n1 � n0).

Thus, ⇡(t1, t0) is positive if and only if a majority of respondents prefer t1 to t0, or n1 > 1/2.

PROPOSITION 4: When separability is relaxed, the bounds on the fraction of voters who prefer t1

over t0 are wider for any given AMCE.

Proof of Proposition 4. When the separability assumption does not hold, the bounds on the fraction

of voters who prefer t1 to t0 for an AMCE of ⇡(t1, t0), in an experiment with K possible profiles,

and when the attribute of interest can take ⌧ distinct values, are given by

y 2
"
max

(
1� ⌧(1� ⇡(t1, t0))� 1

⌧ � 1� ⌧2

K2

��⌅
K
2⌧ � 1

2

⇧� �
K �

⌅
K
2⌧ � 1

2

⇧�
�
⌃
K
2⌧ + 1

2

⌥� , 0
)

min

(
1 + ⌧(1� ⇡(t1, t0))

K2(⌧ � 1)� ⌧2

K2

��⌅
K
2⌧ � 1

2

⇧� �
K �

⌅
K
2⌧ � 1

2

⇧�
�
⌃
K
2⌧ + 1

2

⌥� , 1
)#

,

where b·c and d·e are the floor and ceiling functions respectively.1

Similarly to the proof of Proposition 2, these bounds obtain when both the voters who prefer t1 and

those who prefer t0 give the maximum and minimum net Borda scores to t1 versus t0. The bounds

1The floor and ceiling functions are necessary because of how we define a preference; strictly

more than half of all all-else-equal comparisons. If there is an odd (even) number of all-else-equal

comparisons, then minimally the profiles with the preferred feature are chosen once (twice) more

than those without. The floor and ceiling functions account for this di↵erence.
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in this case are wider because interactions allow for more freedom when constructing preferences.

Below we lay out the arguments for the lower bound. The upper bound is constructed analogously.

For respondents who prefer t1, the maximum possible net Borda score given to t1 versus t0 without

separability is the same as the case with: K2(⌧�1)
⌧2 . Now consider a respondent who prefers t0.

Without separability, such a respondent prefers profiles with t0 to otherwise identical profiles with

t1 in majority of the cases, but in others they may have a preference for profiles with t1. Specifically,

a respondent who prefers t0 gives the maximum possible net Borda score to t1 versus t0 when her

preferences look like the following:

t1↵�� � t1↵
0
�� � . . .| {z }

b K
2⌧ �

1
2c profiles

� t0↵
0
�
0
� � t1↵

0
�
0
� � . . . � t0↵

0
�
0
�
0 � t1↵

0
�
0
�
0

| {z }
2d K

2⌧ +
1
2e profiles

� t0↵�� � t0↵
0
�� � . . .| {z }

b K
2⌧ �

1
2c profiles

where again ↵, �, and � represent a collection of other features of candidates included in the exper-

iment. In words, this respondent has the minimal distance of one between the profiles with t0 she

prefers to otherwise identical profiles with t1, and the maximal distance of K �
⌅
K
2⌧ � 1

2

⇧
between

the profiles with t1 she prefers to otherwise identical profiles with t0. To check that for this respon-

dent we have  i(t1, t0) <
1
2 , notice there are

⌃
K
2⌧ + 1

2

⌥
comparisons where she prefers t0 over t1 and

⌅
K
2⌧ � 1

2

⇧
comparisons where t1 is preferred to t0. Thus, the maximum net contribution to t1 of a

respondent who prefers t0 to t1 is
�⌅

K
2⌧ � 1

2

⇧� �
K �

⌅
K
2⌧ � 1

2

⇧�
�
⌃
K
2⌧ + 1

2

⌥
. Notice that for K

⌧ > 2,

we have
�⌅

K
2⌧ � 1

2

⇧� �
K �

⌅
K
2⌧ � 1

2

⇧�
>
⌃
K
2⌧ + 1

2

⌥
. This means that without separability, a respondent

who prefers t0 to t1 may still contribute more Borda points to t1 than t0.

When we calculate the bounds as in the proof of Proposition 2, we find that

⇡(t1, t0) =
(ymin)K

2(⌧�1)
⌧2 + (1� y

min)
��⌅

K
2⌧ � 1

2

⇧� �
K �

⌅
K
2⌧ � 1

2

⇧�
�
⌃
K
2⌧ + 1

2

⌥�

K2

⌧

.

Algebra reveals

y
min = max

(
1� ⌧(1� ⇡)� 1

⌧ � 1� ⌧2

K2

��⌅
K
2⌧ � 1

2

⇧� �
K �

⌅
K
2⌧ � 1

2

⇧�
�
⌃
K
2⌧ + 1

2

⌥� , 0
)

It can be confirmed that this is equal to the lower bound in Proposition 2 when K
⌧ = 2, and strictly

lower when K
⌧ > 2.

Lemma 3. The AMCE is equivalent to yij1 =
P

m�xijm�m + ✏ij, or an average ideal point.
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Proof of Lemma 3. To show that the estimation of Equation F4 would yield the AMCE, note first

that Hainmueller, Hopkins and Yamamoto (2014) show that the following regression recovers an

unbiased estimate of the AMCE:

yijc = � + xjmc⇢k + �ijmc

where ⇢̂m gives the AMCE for feature m. From the randomization of x, it follows from standard

results that the vector of coe�cients � from Equation F4 can be obtained from the separate regression

of the outcome yij1 on each column k of the matrix �Xij , e.g. yij1 = �xijm�m+ ✏ijm. It is su�cient

to show that ⇢̂m = �̂m. The above equation implies ⇢̂m = Cov(xijmc,yijc)
Var(xijmc)

. Similarly, estimating

Equation F4 via least squares without an intercept implies �̂m = E(�xijmyij1)
E(�x2

ijm)
. Since E(�xijm) = 0,

it follows that �̂m = Cov(xijm1�xijm2,yij1)
Var(xijm1�xijm2)

. Consider the numerator.

Cov(xijm1 � xijm2, yij1) = Cov(xijm1, yij1)� Cov(xijm2, yij1)

= Cov(xijm1, yij1)� Cov(xijm2, 1� yij2)

= 2Cov(xijmc, yijmc)

The last line follows from the fact that Cov(xijm1, yij1) = Cov(xijm2, yij2)

Next consider the denominator.

Var(xijm1 � xijm2) = Var(xijm1) + Var(�xijm2)� 2Cov(xijm1, xijm2) = 2Var(xijmc)

which again follows from the randomization of features. It directly follows that �̂m = ⇢̂m = AMCE.

Lemma 4. The result in Lemma 3 holds whether we impose a linear or quadratic loss function.

Proof of Lemma 4.

(A3)
Ui(xj1) = �|xj1 � bi|+ ⌘ij

Ui(xj2) = �|xj2 � bi|+ ⌫ij
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Assume 0  bi  1

(A4)
Pr(yij1 = 1) = Pr(Ui(xij1) > Ui(xij2))

= Pr (⌘ij � ⌫i2 < |xj2 � bi|� |xj1 � bi|)

Since xj1 and xj2 can take on only two values {0, 1}, it follows xj1  bi  xj2 or xj2  bi  xj1

This yields:

(A5) Pr(yij1 = 1) = Pr (⌘j1 � ⌫j2 < �xj(2bi � 1))

If we were to estimate this via a linear probability model we obtain

(A6)
yij1 = �xj(2bi � 1) + ⌘ij � ⌫ij

= �xj�i + ✏ij

B. Robustness of the AMCE to the Inclusion/Exclusion of Additional Treatments

We provide simple R code to generate a fully observed conjoint experiment based on a set of

preference orderings for a set of voters, and to use this data to estimate AMCEs—both at the

respondent level and over the sample—as described in Section II of the paper. We use this first

to demonstrate that the inclusion of an additional attribute while holding constant all respondents’

preference orderings over the attribute of interest can change the sign of the estimated AMCE. Then,

we show that eliminating certain feature combinations can have the same e↵ect.

1 library(gtools)

2

3 # Function to construct matrix of all possible vote choices

4 construct.vote <- function(ranks) {

5 cands <- names(ranks[[1]])

6 vote <- data.frame(t(combn(cands, 2)))

7 names(vote) <- c("C1", "C2")

8 vote <- rbind(vote, data.frame(C1 = cands, C2 = cands))

9 vote$C1 <- as.character(vote$C1)

10 vote$C2 <- as.character(vote$C2)

11 out <- NULL

12 for (i in c(1:length(ranks))) {

13 choice <- rep(NA, nrow(vote))



X

14 for (j in c(1:nrow(vote))) {

15 choice[j] <- ifelse(as.numeric(ranks[[i]][vote$C1[j]]) < as.numeric(ranks[[i]][vote$C2[j]]),

16 vote$C1[j], vote$C2[j])

17 }

18 tobind <- cbind(vote, choice)

19 tobind$type <- i

20 out <- rbind(out, tobind)

21 }

22 return(out)

23 }

24

25 # Function to obtain the AMCE as in Table 4

26 amce.compute <- function(vote.mat, pos, value.baseline, value.amce, weights = NULL, idvar) {

27 df <- vote.mat

28 n.atts <- nchar(df$C1[1])

29

30 df$name1 <- paste0(df$C1, "-", df$C2)

31 df$name2 <- paste0(df$C2, "-", df$C1)

32

33 # generate all possible comparisons

34 combs <- data.frame(C1 = unique(c(df$C1, df$C2)))

35 combs$C1 <- as.character(combs$C1)

36 both.combs <- data.frame(permutations(n = length(combs$C1), r = 2, v = combs$C1, repeats.allowed = TRUE))

37

38 # restrict to value of interest

39 comp1 <- both.combs[substr(both.combs$X1, pos, pos)==value.amce,]

40 names(comp1) <- c("C1", "C2")

41 comp1$name1 <- paste0(comp1$C1, "-", comp1$C2)

42 comp1$name2 <- paste0(comp1$C2, "-", comp1$C1)

43

44 # flip to baseline

45 comp2 <- comp1

46 comp2$C1 <- paste0(substr(comp1$C1, 0, pos-1), value.baseline, substr(comp1$C1, pos + 1,

47 nchar(as.character(comp1$C1))))

48 comp2$name1 <- paste0(comp2$C1, "-", comp2$C2)

49 comp2$name2 <- paste0(comp2$C2, "-", comp2$C1)

50

51 # compute individual AMCEs

52 df1 <- df[,!names(df) %in% "name1"]

53 df2 <- df[,!names(df) %in% "name2"]

54 names(df1)[ncol(df1)] <- names(df2)[ncol(df2)] <- "name"

55 df_all <- rbind(df1, df2)

56 amce.ind <- data.frame(voter = unique(df[,idvar]), amce = NA)

57 for (i in 1:nrow(amce.ind)) {

58 # compute whether C1 wins for every combination

59 tomerge <- df_all[df_all[,idvar]==i, c("name", "choice")]

60 winstats <- merge(comp1, tomerge, by.x = "name1", by.y = "name", all.x = TRUE)

61 win.c1 <- ifelse(winstats$C1==winstats$C2, .5, ifelse(winstats$choice==winstats$C1, 1, 0))

62 names(win.c1) <- winstats$name1

63 # flip and compute

64 winstats <- merge(comp2, tomerge, by.x = "name1", by.y = "name", all.x = TRUE)

65 win.cf <- ifelse(winstats$C1==winstats$C2, .5, ifelse(winstats$choice==winstats$C1, 1, 0))

66 names(win.cf) <- winstats$name1

67 # compute individual amce

68 amce.ind$amce[i] <- sum(win.c1 - win.cf)

69 }

70

71 # normalize all

72 norm <- ((2^n.atts)) * (2^(n.atts - 1))

73 amce.ind$amce <- amce.ind$amce/norm

74

75 # compute mean of the difference between the two
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76 if (is.null(weights)) {

77 amce <- mean(amce.ind$amce)

78 } else {

79 amce <- weighted.mean(amce.ind$amce, weights)

80 }

81

82 return(list(amce = amce, amce.ind = amce.ind))

83 }

84

85 # Example in Table 2

86 ranks2 <- list("1" = c("MR" = 1, "FR" = 2, "MD" = 3, "FD" = 4),

87 "2" = c("MR" = 4, "FR" = 2, "MD" = 3, "FD" = 1))

88 vote.mat2 <- construct.vote(ranks2)

89 amce.compute(vote.mat = vote.mat2,

90 pos = 1,

91 value.baseline = "F",

92 value.amce = "M",

93 weights = c(3/5, 2/5),

94 idvar = "type")

95

96 # Example in Table 5

97 ranks3 <- list("1" = c("MRW" = 1, "MRB" = 2, "FRW" = 3, "MDW" = 4, "FRB" = 5, "MDB" = 6, "FDW" = 7, "FDB" = 8),

98 "2" = c("MRW" = 8, "MRB" = 5, "FRW" = 6, "MDW" = 7, "FRB" = 2, "MDB" = 3, "FDW" = 4, "FDB" = 1))

99 vote.mat3 <- construct.vote(ranks3)

100 amce.compute(vote.mat = vote.mat3,

101 pos = 1,

102 value.baseline = "F",

103 value.amce = "M",

104 weights = c(3/5, 2/5),

105 idvar = "type")

Running the example in lines 85-94 returns the AMCE of -1/20 computed in Table 4:

> amce.compute(vote.mat = vote.mat2,

pos = 1,

value.baseline = "F",

value.amce = "M",

weights = c(3/5, 2/5),

idvar = "type")

$amce

[1] -0.05

$amce.ind

voter amce

1 1 0.25

2 2 -0.50

However, when we add a third attribute, R 2 {B,W}, as described in Table 5, without changing

the preference orderings of the other two attributes or the distribution of voters, the AMCE changes

sign:

> amce.compute(vote.mat = vote.mat3,

pos = 1,

value.baseline = "F",
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value.amce = "M",

weights = c(3/5, 2/5),

idvar = "type")

$amce

[1] 0.0625

$amce.ind

voter amce

1 1 0.3125

2 2 -0.3125

Similarly, it is straightforward to construct an example where eliminating feature combinations, as

is standard practice in applied work, changes the sign of the AMCE. Consider three types of voters

with preferences as given in Table B1:

V1 V2 V3
M � F F � M F � M

R � D D � R D � R

B � W B � W W � B

Table B1—Preferences over attributes

Assume priorities over attributes as follows. V1: R >> P >> G; V2: P >> R >> G; V3:

P >> G >> R and that each voter prefers candidates with two attributes they like to candidates

with only one attribute they like. With this information we can construct preferences over candidates

for each type as presented in Table B2.

Rank V1 V2 V3

1. MRB FDB FDW
2. FRB MDB FDB
3. MDB FDW MDW
4. MRW FRB FRW
5. FDB MDW MDB
6. FRW MRB FRB
7. MDW FRW MRW
8. FDW MRW MRB

Table B2—Preferences over attributes

Consider a population of five V1s, two V2s, and two V3s. Table B3 gives the AMCE estimate when
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we include the full set of candidate features, and when we exclude each combination of party and

race. Code to replicate this example is included below.

Omitted Features R D
B 0.02 -0.02
W -0.02 0.02

No Omitted Features: -0.01

Table B3—AMCE Estimates of Male, restricting Party-Race feature combinations

106 #### No Omitted Combinations ####

107 ranks4 <- list("1" = c("MRB" = 1, "FRB" = 2, "MDB" = 3, "MRW" = 4, "FDB"= 5, "FRW" = 6, "MDW" = 7, "FDW" = 8),

108 "2" = c("MRB" = 6, "FRB" = 4, "MDB" = 2, "MRW" = 8, "FDB"= 1, "FRW" = 7, "MDW" = 5, "FDW" = 3),

109 "3" = c("MRB" = 8, "FRB" = 6, "MDB" = 5, "MRW" = 7, "FDB"= 2, "FRW" = 4, "MDW" = 3, "FDW" = 1))

110 vote.mat4 <- construct.vote(ranks4)

111

112 #### No RBs ####

113 ranks4a <- list("1" = c("MDB" = 1, "MRW" = 2, "FDB" = 3, "FRW" = 4, "MDW" = 5, "FDW" = 6),

114 "2" = c("MDB" = 2, "MRW" = 6, "FDB" = 1, "FRW" = 5, "MDW" = 4, "FDW" = 3),

115 "3" = c("MDB" = 5, "MRW" = 6, "FDB" = 2, "FRW" = 4, "MDW" = 3, "FDW" = 1))

116 vote.mat4a <- construct.vote(ranks4a)

117

118 #### No RWs ####

119 ranks4b <- list("1" = c("MRB" = 1, "FRB" = 2, "MDB" = 3, "FDB" = 4, "MDW" = 5, "FDW" = 6),

120 "2" = c("MRB" = 6, "FRB" = 4, "MDB" = 2, "FDB" = 1, "MDW" = 5, "FDW" = 3),

121 "3" = c("MRB" = 6, "FRB" = 5, "MDB" = 4, "FDB" = 2, "MDW" = 3, "FDW" = 1))

122 vote.mat4b <- construct.vote(ranks4b)

123

124 #### No DBs ####

125 ranks4c <- list("1" = c("MRB" = 1, "FRB" = 2, "MRW" = 3, "FRW" = 4, "MDW" = 5, "FDW" = 6),

126 "2" = c("MRB" = 4, "FRB" = 2, "MRW" = 6, "FRW" = 5, "MDW" = 3, "FDW" = 1),

127 "3" = c("MRB" = 6, "FRB" = 4, "MRW" = 5, "FRW" = 3, "MDW" = 2, "FDW" = 1))

128 vote.mat4c <- construct.vote(ranks4c)

129

130 #### No DWs ####

131 ranks4d <- list("1" = c("MRB" = 1, "FRB" = 2, "MDB" = 3, "MRW" = 4, "FDB" = 5, "FRW" = 6),

132 "2" = c("MRB" = 4, "FRB" = 3, "MDB" = 2, "MRW" = 6, "FDB" = 1, "FRW" = 5),

133 "3" = c("MRB" = 6, "FRB" = 4, "MDB" = 3, "MRW" = 5, "FDB" = 1, "FRW" = 2))

134 vote.mat4d <- construct.vote(ranks4d)

Computing the AMCEs:

> amce.compute(vote.mat = vote.mat4,

pos = 1,

value.baseline = "F",

value.amce = "M",

weights = c(5/9, 2/9, 2/9),

idvar = "type")

$amce

[1] -0.006944444

$amce.ind

voter amce

1 1 0.1875
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2 2 -0.1875

3 3 -0.3125

> amce.compute(vote.mat = vote.mat4a,

pos = 1,

value.baseline = "F",

value.amce = "M",

weights = c(5/9, 2/9, 2/9),

idvar = "type")

$amce

[1] 0.01736111

$amce.ind

voter amce

1 1 0.15625

2 2 -0.09375

3 3 -0.21875

> amce.compute(vote.mat = vote.mat4b,

pos = 1,

value.baseline = "F",

value.amce = "M",

weights = c(5/9, 2/9, 2/9),

idvar = "type")

$amce

[1] -0.01736111

$amce.ind

voter amce

1 1 0.09375

2 2 -0.15625

3 3 -0.15625

> amce.compute(vote.mat = vote.mat4c,

pos = 1,

value.baseline = "F",

value.amce = "M",

weights = c(5/9, 2/9, 2/9),

idvar = "type")

$amce

[1] -0.01736111

$amce.ind

voter amce

1 1 0.09375

2 2 -0.15625

3 3 -0.15625

> amce.compute(vote.mat = vote.mat4d,

pos = 1,

value.baseline = "F",

value.amce = "M",

weights = c(5/9, 2/9, 2/9),

idvar = "type")

$amce

[1] 0.01736111

$amce.ind
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voter amce

1 1 0.15625

2 2 -0.09375

3 3 -0.21875

C. Bounds on Proportion of Experimental Sample Who Prefer a Feature

We can take advantage of the structure of conjoint data to compute tighter bounds on the propor-

tion of survey respondents who prefer a feature over the baseline than the general bounds derived in

Proposition 2. To do so, we use the insight that when one or more attributes are held fixed at the

same value in a given head-to-head comparison, the respondent makes her decision based only on the

values of the remaining attributes (those that di↵er from one another), assuming that preferences

are separable—that is, that the choice between any two features is not contingent on the value of

another attribute. Under this key assumption, we can compute tighter bounds as a weighted aver-

age of our standard bounds computed within all subsets of the data, where the subsets are defined

according to which attributes di↵er and which are the same in the randomly generated candidate

pairings. We recompute ⇡, K, and ⌧ within each subgroup, where K—the number of possible can-

didate profiles—is computed ignoring the attributes that are the same; thus, it is guaranteed to be

smaller than the aggregate K when there is at least one common attribute. Formally, these tighter

bounds are given by: "
SX

s=1

ns

N
ls(⇡s,Ks, ⌧),

SX

s=1

ns

N
us(⇡s,Ks, ⌧)

#

where ls and us are the lower and upper bounds for a subset s, respectively. To illustrate how

we create these subsets of the data, we walk through an example of a conjoint experiment with

four attributes: gender (male, female), party (Democrat, Republican), race (white, Black, Hispanic,

other), and age (young, middle, and old). Supposing we are interested in the e↵ect of gender (female

vs. male), we divide the data into groups based on the three remaining attributes: a group where

the candidate pairs have di↵erent values of party, race, and age; three groups in which they have

the same party, race, and age, respectively; three groups with two matched attributes and a third

unmatched (party and race, party and age, and race and age); and a final group with all matched

attributes. Generically, this will yield S = 2A�1 groups, where A is the number of attributes in the

experiment—in other words, the power set of all attributes other than the attribute of interest for

the AMCE. Within each of these subsets, we compute an AMCE and a K that ignores the matched

attributes: for instance, holding fixed party and race, there are six possible candidate profiles (2

values of gender ⇥ 3 values of age). Finally, we compute a weighted average of these subset-specific
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Table C1—Bounds on proportion of sample having preferences consistent with AMCE, computed for recent papers

in the top three political science journals.

Paper Estimated e↵ect AMCE (⇡)
Number of
profiles (K)

Number of
relevant

features (⌧)

Bounds on
proportion

with
consistent
preference

Tighter
bounds
under

separability

APSR

Ward (2019)

Proportion of group
comprised of university
graduates on support for
immigration, 30% vs. 0%

0.22 20 4
[0.34, 1.00]
(0.31, 1.00)

[0.36, 1.00]
(0.33, 1.00)

Auerbach and
Thachil (2018)

Broker education on support,
high (BA) vs. none

0.13 1,296 3
[0.20, 1.00]
(0.15, 1.00)

[0.25, 0.94]
(0.19, 0.98)

Hankinson (2018)
Height of building on
homeowners’ support for new
construction, 12 vs. 2 stories

-0.16 6,144 4
[0.00, 0.78]
(0.00, 0.81)

[0.00, 0.77]
(0.00, 0.80)

Teele, Kalla, and
Rosenbluth (2018)

Experience on candidate
support among legislators, 8
years vs. 0 years

0.18 864 4
[0.24, 1.00]
(0.21, 1.00)

[0.25, 1.00]
(0.22, 1.00)

Carnes and Lupu
(2016)

Liberal party label on
candidate support
(Argentina)

-0.10 32 2
[0.00, 0.75]
(0.00, 0.83)

[0.10, 0.60]
(0.04, 0.67)

JOP

Ballard-Rosa,
Martin, and Scheve
(2016)

Tax rate on those earning
<10k on support for plan,
25% vs. 0%

-0.23 38,400 4
[0.00, 0.70]
(0.00, 0.73)

[0.00, 0.70]
(0.00, 0.73)

Mummolo and Nall
(2016)

Driving time to work on
Democrats’ choice of
community to live, 75 vs. 10
minutes

-0.23 3,456 4
[0.00, 0.69]
(0.00, 0.71)

[0.00, 0.45]
(0.00, 0.71)

Mummolo (2016)
Relevant information on
choice to consume, vs.
irrelevant (among seniors)

0.30 6 2
[0.71, 1.00]
(0.66, 1.00)

[0.77, 0.96]
(0.68, 0.96)

Notes: AMCEs may di↵er slightly from those reported in paper because we reestimate them
without survey weights and only on sample having two candidate profiles per respondent
(unmatched profiles appear in some replication datasets). 95% confidence sets computed using a
block bootstrap are reported in parentheses below the bounds.
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bounds, where the weight is determined by the number of observations in that subset.2

Table C1 reports the bounds in Proposition 2 as well as these tighter bounds for all of the forced-

choice conjoint experiments published in the APSR and the JOP between 2016 and the first quarter

of 2019.3 We construct our bounds for the largest estimated e↵ect presented in each paper (thus

not necessarily the paper’s central finding). To compute uncertainty estimates, we randomly sample

individuals (and thus their complete survey responses) and recompute each bound over 1,000 boot-

strap replicates, taking the normal approximation 95% confidence interval for each bound. Table C1

reports the lower confidence interval on the lower bound and the upper interval on the upper bound

in parentheses below the bounds themselves. In one case (Mummolo and Nall 2016), our tighter

bounding exercise produces upper and lower bounds on the same side of the 0.5 threshold (whereas

the original bounding approach had not), but these gains in precision are lost once we incorporate

the uncertainty of the estimate.

The code below is a simple implementation of the bounds in Proposition 2 in R. Our replication file

contains all code needed to construct Table C1, including code for implementing the tighter bounds

and for bootstrapping all confidence intervals.

1 bounds <- function(pi, K, tau, se_pi = NULL) {

2 # compute lower and upper bound according to proposition 2

3 l <- max(((pi * tau * K) + tau) / ((K * (tau - 1)) + tau), 0)

4 u <- min(((pi * tau * K) + (K * (tau - 1))) / ((K * (tau - 1)) + tau), 1)

5 bounds <- c(l, u)

6 names(bounds) <- c("lower", "upper")

7 # compute 95% confidence set for the bounds

8 if (is.null(se_pi)) {

9 # just return analytic bounds if no standard error is provided

10 output <- bounds

11 } else if (class(se_pi)=="numeric" & length(se_pi)==1) {

12 # delta method-computed standard error (same for upper and lower bound)

13 se <- sqrt(((tau * (K - 1)) / ((K * (tau - 1)) + tau))^2 * se_pi^2)

14 # confidence interval

2Together, the subsets form a partition of the full dataset. In some cases, a subset may be too

small to compute an AMCE, but this will not a↵ect the bounds dramatically precisely because it

only has a small number of observations.

3We also searched the AJPS but there are no forced-choice conjoint experiments appropriate

for our analysis published there during this period. Hemker and Rink (2017) have statistically

significant findings only when they use non-binary scales as outcomes and Hu↵ and Kertzer (2017)

have a binary outcome (labeling an attack as an act of terrorism) that is not a forced choice between

two alternatives.
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15 ci.lower = max(0, l + (qnorm(0.025) * se))

16 ci.upper = min(1, u + (qnorm(0.975) * se))

17 ci <- c(ci.lower, ci.upper)

18 names(ci) <- c("lower", "upper")

19 output <- list(bounds, ci)

20 names(output) <- c("analytic_bounds", "ci_95")

21 } else {

22 # return an error if standard error is entered incorrectly

23 cat("Please provide a numeric value for se_pi \n")

24 stop()

25 }

26 return(output)

27 }

28

29 # example: Ward (2019)

30 bounds(pi = .22, K = 20, tau = 4)

D. Correlations between Direction and Intensity of Preferences in the 2016 ANES

For every question in the 2016 ANES that accommodates such an analysis, we code a direction

variable that has a value of 1 if the respondent takes a clear stance in favor of a position and 0 if they

are opposed.4 We also code a measure of intensity that takes on evenly distributed values over the

interval [0, 1] depending on how many importance categories were included in the question, where 0

is the lowest level of importance and 1 is the highest.5 We then compute two summary statistics.

The first, shown in the first column of Table D1, is the Pearson correlation between the direction

and intensity measures, treating both as continuous variables. The second, shown in the second

column, is the test statistic from a �
2 test of independence of categorical variables. While the �

2

test is most appropriate when treating both measures as categorical, the Pearson correlation has the

advantage of being informative about the direction of the association: a positive correlation means

that supporters assign more importance to the policy than opponents, while a negative correlation

indicates the opposite. We report both tests and the two agree, rejecting the null hypothesis that

directions and intensities are uncorrelated at p < .001 for 17 out of 22 questions.

4We omit respondents who say that they neither favor nor oppose the position, or that they are

unsure, because there is no data on the intensity of these respondents’ preferences.

5For instance, for three importance categories, we code 0 for not important at all, 0.5 for somewhat

important, and 1 for very important. Although this is not the same as the intensity measure that we

defined for Proposition 3 as the absolute di↵erence in Borda scores between the feature of interest

and the baseline, it is another valid way to capture preference intensity and a reasonable proxy for

that quantity.
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Returning to our running example of the preference for women, we see that the divergence between

the preference intensities of supporters and opponents turns out to be more pronounced for espoused

support for feminism than for any other question in the ANES. As Figure D1 shows, self-described

feminists tend to attach much more importance to this identity than self-described “anti-feminists.”

On the left side of Figure D1, we take the sample of ANES respondents who answered the question

“How well does the term ‘feminist’ describe you?” with “Very well” or “Extremely well,”6 and we

plot the proportions of this sample who answered the follow-up question “How important is it to you

to be a feminist?” with “Not at all important,” “A little important,” “Somewhat important,” “Very

important,” and “Extremely important,” respectively. Nearly half of these feminist identifiers re-

port that this issue is very important to them, with approximately another third calling it extremely

important. By contrast, the right side of the figure shows the same distribution for the sample of

respondents who answered the question “How well does the term ‘anti-feminist’ describe you?” with

“Very well” or “Extremely well.” The distribution of this intensity measure for “anti-feminists” is

much flatter than the one for feminists: roughly half of the sample lands between “Not at all impor-

tant” and “Somewhat important,” with the other half reporting “Very important” or “Extremely

important.” Crucially, the sample on the right is those who identify strongly as anti-feminists, not

merely those who fail to identify strongly as feminists, who would naturally be expected not to

care deeply about the issue. Figure D1 thus presents strong empirical evidence in favor of the very

dynamic that drove our stylized running example: there are a majority of voters who prefer men

but care little about the issue, with a minority that prefers women but cares a great deal.

6The other choices were “Somewhat well,” “Not very well,” and “Not at all.”
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Figure D1. Respondents’ Identification with Feminist/Anti-Feminist Labels, by Issue Importance

0.0

0.1

0.2

0.3

0.4

Feminist Anti−feminist

Pr
op

or
tio

n 
of

 re
sp

on
de

nt
s 

w
ho

 id
en

tif
ie

d 
as

 fe
m

in
is

t/a
nt

i−
fe

m
in

is
t

Importance
Not at all important

A little important

Somewhat important

Very important

Extremely important



PREFERENCES IN CONJOINT EXPERIMENTS XXI

T
a
b
l
e
D
1
—

C
o
r
r
e
l
a
t
io
n
s
B
e
t
w
e
e
n
W

e
ig
h
t
s
a
n
d

A
t
t
r
ib
u
t
e
P
r
e
f
e
r
e
n
c
e
s
in

t
h
e
2
0
1
6
A
N
E
S

Q
u
es
ti
o
n

P
ea

rs
o
n

�
2

N
u
m
b
er

o
f

C
o
rr
el
a
ti
o
n

st
a
ti
st
ic

in
te
n
si
ty

(p
-v
a
lu
e)

(p
-v
a
lu
e)

ca
te
g
o
ri
es

F
av
or

al
lo
w
in
g
u
se

of
b
at
h
ro
om

s
of

id
en
ti
fi
ed

ge
n
d
er

-0
.2
58

(0
.0
00

)
30

9.
2
(0
.0
00

)
3

F
av
or

to
rt
u
re

fo
r
su
sp
ec
te
d
te
rr
or
is
ts

-0
.2
46

(0
.0
00

)
14

7.
8
(0
.0
00

)
3

F
av
or

al
lo
w
in
g
S
yr
ia
n
re
fu
ge
es

in
to

U
S

-0
.2
46

(0
.0
00

)
20

3.
6
(0
.0
00

)
3

F
av
or

20
10

h
ea
lt
h
ca
re

la
w

-0
.1
82

(0
.0
00

)
12

5.
4
(0
.0
00

)
3

S
u
p
p
or
t
p
re
fe
re
nt
ia
l
h
ir
in
g/

p
ro
m
ot
io
n
of

b
la
ck
s

-0
.1
73

(0
.0
00

)
10

4.
9
(0
.0
00

)
2

F
av
or

b
u
il
d
in
g
a
w
al
l
w
it
h
M
ex
ic
o

-0
.1
29

(0
.0
00

)
73

.6
(0
.0
00

)
3

F
av
or

a�
rm

at
iv
e
ac
ti
on

in
u
n
iv
er
si
ti
es

-0
.0
98

(0
.0
00

)
15

.7
(0
.0
00

)
2

F
av
or

se
n
d
in
g
tr
oo

p
s
to

fi
gh

t
IS
IS

-0
.0
80

(0
.0
00

)
21

.7
(0
.0
00

)
3

T
h
in
k
ec
on

om
y
h
as

go
tt
en

b
et
te
r
si
n
ce

20
08

-0
.0
65

(0
.0
00

)
13

.1
(0
.0
00

)
2

A
gr
ee

th
at

ch
il
d
re
n
b
ro
u
gh

t
il
le
ga

ll
y
sh
ou

ld
b
e
se
nt

b
ac
k

-0
.0
25

(0
.1
03

)
2.
7
(0
.2
60

)
3

T
h
in
k
go
ve
rn
m
en
t
sh
ou

ld
m
ak

e
it
h
ar
d
er

to
ow

n
a
gu

n
-0
.0
24

(0
.2
89

)
7.
1
(0
.0
69

)
4

A
p
p
ro
ve

of
H
ou

se
in
cu

m
b
en
t

-0
.0
13

(0
.4
72

)
0.
5
(0
.4
97

)
2

F
av
or

en
d
in
g
b
ir
th
ri
gh

t
ci
ti
ze
n
sh
ip

-0
.0
11

(0
.5
50

)
1.
6
(0
.4
59

)
3

F
av
or

re
qu

ir
in
g
p
ro
vi
si
on

of
se
rv
ic
es

to
sa
m
e-
se
x
co
u
p
le
s

0.
02

0
(0
.1
99

)
8.
8
(0
.0
12

)
3

F
av
or

la
w
s
p
ro
te
ct
in
g
ga
ys

ag
ai
n
st

jo
b
d
is
cr
im

in
at
io
n

0.
11

0
(0
.0
00

)
49

.9
(0
.0
00

)
2

T
h
in
k
go
ve
rn
m
en
t
sh
ou

ld
ta
ke

m
or
e
ac
ti
on

on
cl
im

at
e
ch
an

ge
0.
13

2
(0
.0
00

)
66

.2
(0
.0
00

)
3

F
av
or

re
qu

ir
in
g
em

p
lo
ye
rs

to
gi
ve

p
ai
d
le
av
e
to

n
ew

p
ar
en
ts

0.
14

9
(0
.0
00

)
29

.1
(0
.0
00

)
2

F
av
or

va
cc
in
es

in
sc
h
oo

ls
0.
17

4
(0
.0
00

)
97

.7
(0
.0
00

)
3

S
u
p
p
or
t
re
qu

ir
in
g
eq
u
al

p
ay

fo
r
m
en

an
d
w
om

en
0.
20

1
(0
.0
00

)
14

5.
2
(0
.0
00

)
3

F
av
or

th
e
d
ea
th

p
en

al
ty

0.
21

1
(0
.0
00

)
18

4.
2
(0
.0
00

)
2

B
el
ie
ve

b
en

efi
ts

of
va
cc
in
at
io
n
ou

tw
ei
gh

ri
sk
s

0.
27

5
(0
.0
00

)
25

1.
4
(0
.0
00

)
3

T
h
e
te
rm

‘f
em

in
is
t’
d
es
cr
ib
es

yo
u
ex
tr
em

el
y/

ve
ry

w
el
l

0.
33

0
(0
.0
00

)
11

5.
1
(0
.0
00

)
5



XXII

E. Relaxing Separability

We have thus far focused on the scenario where voters had unconditional preferences over candidate

features. In this section we explore the implications of altering this definition of preferences for

features to allow for arbitrary interactions. For instance, we allow for the possibility that men are

preferred to women only when the candidate is a Republican and the reverse when the candidate

is a Democrat.7 We derive a summary statistic for aggregate feature preferences that captures this

more complex, and potentially more realistic, preference structure, and show that the bounds derived

in Proposition 2 under separability are always smaller than the bounds we can construct when we

relax separability. Thus, the AMCE is less informative about the fraction of voters who prefer

a feature when preferences over features can interact. Furthermore, we discuss some interpretive

limitations that applied researchers face when they allow respondents to have interactive preferences

over features.

To start, we define an individual feature preference for feature t1 over feature t0 as the

proportion of the time respondent i selects a profile with feature t1 over an otherwise identical

profile with feature t0, over all all-else-equal head-to-head contests that can be constructed from all

values of the other attributes. Formally:

 i(t1, t0) =
1

K/⌧

K/⌧X

j=1

Yi(xj1, xj0)

where K and ⌧ are defined as before, and thus K/⌧ represents the number of possible all-else-equal

comparisons for the feature of interest. As in our example, we denote by Yi(xj1, xj0) = 1 if voter i

chooses profile xj1 with feature t1 over an otherwise identical profile xj0 with feature t0 in a pairwise

comparison, and Yi(xj1, xj0) = 0 otherwise.

Note that under separability  i(t1, t0) can take only two values, 0 or 1, since voters make the

same choice regardless of the other candidate features. Moreover, with separability, averaging the

individual feature preference over respondents yields the proportion of individuals who prefer t1 to

t0. When we relax separability,  i(t1, t0) can take values in the interior of [0, 1]. We now define a

preference for t1 over t0 as having  i(t1, t0) > 1/2 in this setting, and we derive the bounds on the

7That is, the feature they prefer is a function of the other features—not their preferred candidate

profile, which is, of course, also a function of the other features in our main example.
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Figure E1. Upper and lower bounds on fraction of people who prefer a binary feature, consistent with an AMCE

of .05, .10, .15, and .25, respectively, as a function of number of possible candidate profiles.
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proportion of respondents who prefer t1 to t0 according to this definition. (See proof of Proposition

4 in Appendix A.)

In Figure E1, we recreate Figure 1, overlaying these bounds (in gray) over the bounds under the

assumption of separability. The jaggedness of the bounds without separability is caused by the ceiling

and floor functions in the equation, but regardless, Figure E1 reveals that our bounding exercise can

no longer o↵er a practical remedy to researchers if separability is violated; in that case, they quickly

grow to the full [0, 1] interval before K = 16 is reached, even with an AMCE as large as 0.25.

Next, we demonstrate that the proportion of respondents who prefer t1 to t0, or have an individual

feature preference  i > 1/2, is indicative of electoral advantage only when separability holds. That

is, without separability, even tight bounds indicating a majority of respondents having  i > 1/2

are not su�cient evidence to conclude that candidates with t1 will beat candidates with t0 in most

all-else-equal contests.

We define electoral advantage of t1 over t0 as the di↵erence between the proportion of the time

t1 beats t0 in an all-else-equal contest, out of all possible all-else-equal contests, and one-half:

A(t1, t0) =
1

K/⌧

K/⌧X

j=1

( 
1

N

NX

i=1

Yi(xj1, xj0)

!
>

1

2

)
� 1

2

In other words, A(t1, t0) is the di↵erence between the electorate-level analogue of  i(t1, t0)—the

proportion of the time an electorate selects t1 over t0 in a simple-majority vote between all-else-

equal alternatives, out of all possible all-else-equal contests—and one-half, and thus it captures the

electoral (dis)advantage enjoyed by a candidate with feature t1 compared to t0.

First, consider the baseline case under separability. Here, whenever a majority of voters prefers t1

to t0, xj1 will beat xj0 in every all-else-equal contest j, and A(t1, t0) will achieve its maximum value

of 1
2 , so we can be confident that t1 carries an electoral advantage over t0. But this is no longer true

when separability fails. We can illustrate this by way of a simple example. Consider a population

of three voters with preferences over gender 2 {M,F} and party 2 {D,R, I} as in Table E1. Here,

 i(F,M) > 1/2 for two out of three respondents, but A(F,M) = �1/6, indicating an electoral

disadvantage for females despite the fact that the majority prefers this feature.

Finally, we show that without separability, the individual feature preference is potentially unde-

sirable because it does not satisfy transitivity. To see this, suppose there are two ternary variables

of interest, P 2 {L,C,R} and E 2 {H,U,G}, and consider a voter whose ranking over candidate
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Rank V1 V2 V3
1. MD MR MI
2. FR FI MD
3. MR MI MR
4. FI FD FI
5. MI MD FD
6. FD FR FR

 i(F,M) 2/3 2/3 0

Table E1—Preferences over candidate profiles - Bounds do not indicate electoral advantage without separability

profiles is as follows:

RG � LG � CG � LU � CU � RU � CH � RH � LH

Looking at all-else-equal comparisons, this voter chooses R over L, L over C, and C over R in two

of three comparisons, or  i(R,L) =  i(L,C) =  i(C,R) = 2/3. Thus, voter i prefers R to L, L to

C, and C to R.

F. Structural Interpretation of the AMCE

Consider two candidates c 2 {1, 2} running in contest j who o↵er platforms xijc to voter i. A

platform xijc is a vector of policies of length M that fully characterizes a candidate in contest j. Let

bi represent an M length vector of voter i’s preferred policy locations (e.g., their issue-specific ideal-

points), and assume that voters have quadratic utility functions. Thus, voter i’s utility is maximized

when candidate c o↵ers a platform that exactly matches her preferred policy positions, and the loss

she obtains is a function of the distance between the candidate’s policies and her ideal platform. Her

utilities from Candidate 1 and 2’s respective platforms are given by:

Ui(xij1) =� (bi � xij1)
2 + ⌘ij1

Ui(xij2) =� (bi � xij2)
2 + ⌘ij2

(F1)

While the imposition of quadratic loss may seem restrictive, in Lemma 4 in Appendix A we prove

that our results are identical if we assume an absolute linear loss utility function. Regardless, it
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follows that:

Pr(yij1 = 1) = Pr(Ui(xij1) > Ui(xij2))

= Pr(�(bi � xij1)
2 + ⌘ij1 > �(bi � xij2)

2 + ⌘ij2)

= Pr(⌘ij2 � ⌘ij1 < 2(b0i(xij1 � xij2) + x0
ij2xij2 � x0

ij1xij1)

(F2)

where yij1 is a binary indicator that equals 1 when respondent i chooses Candidate 1 in contest j

and 0 otherwise.

Now consider data generated from a conjoint experiment, where xij1 and xij2 are vectors of

randomized candidate attributes that have been discretized into binary indicators with an omitted

category. Typically, we would estimate Equation F2 with a probit or logit-like regression. Instead

consider a linear model of the form:

yij1 = 2(b0i(xij1 � xij2) + x0
ij2xij2 � x0

ij1xij1) + ⌘ij1 � ⌘ij2

=
X

m

�
2bim(xijm1 � xijm2) + x

2
ijm2 � x

2
ijm1

�
+ ⌘ij1 � ⌘ij2

=
X

m

(2bim � 1)(xijm1 � xijm2) + ⌘ij1 � ⌘ij2

=
X

m

�im�xijm + ✏ij

(F3)

where E(✏ij) = E(⌘ij1 � ⌘ij2) = 0 follows from the randomization of xij1 and xij2, and the third line

follows from the fact that x2ijmc = xijmc, as this is a dummy. The slope, �im = 2bim � 1, gives the

change in probability for individual i of choosing Candidate 1 when Candidate 1 has feature m and

Candidate 2 does not, holding all their other features constant. Implicitly, it also constrains each

element of bi to the [0, 1] line. When bim = 0 (and �im = �1) the manipulation �xijm = 1 holding

all other features constant gives a predicted reduction in the probability of choosing Candidate 1

of one-hundred percent. When bim = 1 (and �im = 1), the same manipulation gives a predicted

increase in the probability of choosing Candidate 1 of one-hundred percent. When bim = 1
2 (and

�im = 0), this indicates that voter i is perfectly indi↵erent.

Finally, averaging over all individuals, we obtain E(�im) as the coe�cient from the regression:

yij1 =
X

m

�xijm�m + ✏ij(F4)
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where the estimated coe�cient �̂m recovers the AMCE for feature m.8

G. Additional Tables and Figures

8For a simple proof, see Lemma 3 in Appendix A.
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Paper Journal Voter Preference Election

Adida et al 2019 PLOS ONE X
Arnesen et al 2019 ES X X
Atkeson and Hamel 2020 PB X X
Auerbach and Thachil 2019 APSR X
Badas and Stau↵er 2019 ES X
Ballard-Rosa,Martin, and Scheve 2016 JOP X
Bansak et al 2016 Science X
Bechtel and Scheve 2013 PNAS X
Bechtel et al 2019 BJPS X
Berinsky et al 2018 PB X
Blackman and Jackson 2019 PB X X
Carnes and Lupu 2016 APSR X X
Clayton et al 2019 PB X X
Crowder-Meyer et al 2020 PB X X
de Geus et al 2020 PRQ X
Dynes and Martin 2019 PB X
Goggin et al 2019 PB X
Hainmueller and Hopkins 2015 AJPS X
Hainmueller et al 2014 PA X X
Hainmueller et al 2015 PNAS X
Hankinson 2016 APSR X X
Hansen et al 2015 PB X X
Hemker and Rink 2017 AJPS
Horiuchi et al 2018 PA X X
Horiuchi et al 2018 PSRM
Hu↵ and Kertzer 2018 AJPS
Kirkland and Coppock 2018 PB X X
Leeper and Robison 2020 PB X X
Liebe et al 2018 PLOS ONE X
Martin and Blinder 2020 PB X X
Matsuo and Lee 2018 ES X X
Mummolo 2016 JOP X
Mummolo and Nall 2017 JOP X
Mummolo et al 2019 PB X
Oliveros and Schuster 2018 CPS X
Ono and Burden 2019 PB X
Sances 2018 PB X X
Sen 2017 PRQ X
Shafranek 2019 PB X
Smith 2020 PSRM X X
Smith et al 2018 PA X X
Teele et al 2018 APSR X X
Vivyan et al 2020 ES X X
Ward 2019 APSR X
Wright et al 2015 PB X

Table G1—This table describes our literature review describing 45 conjoint experiments by political scientists

published between 2015 and 2020. The third column indicates if the authors describe their results with respect to

voter preferences. The fourth column indicates if the authors relate their results to outcomes of elections.


