Appendix to: An Agency Perspective On Immigration Federalism

Contents

А	A Model of Collaborative Policymaking in a Federated System	2
В	Additional Tables and Figures	11

List of Tables

A.1	Equilibrium Contributions and Output Under Collaborative Regime	8
B.1	Average Characteristics of Treatment and Control Counties in Year Prior to 287(g)	
	Signing, by Number of Matched Controls	12
B.2	Counties Included in Treatment Group in Difference-in-Differences Analysis	14
B.3	Counties Included in Control Group in Difference-in-Differences Analysis	15
B.4	Effects of First-Time 287(g) Signing on Detainers Honored, Difference-in-Differences	
	Estimates, Using Estimates of Foreign-Born Instead of Undocumented Immigrants	
	for Matching	19
B.5	Effects of First-Time 287(g) Signing on Detainers Honored, Difference-in-Differences	
	Estimates, Placebo Test	19

List of Figures

A.1	Equilibria of the Model as a Function of \bar{y}_L and \bar{y}_f , $\bar{y}_H = 1$ and $c = .5$	8
A.2	Federal Government's Utility as a Function of its Ideal Point, Centralized vs. Col-	
	laborative Regime; $c = .5, \bar{y}_L < .5, \bar{y}_H = 1$	10
B.1	Monthly Number of Detainers Over Time, by Subsequent Criminal Charge and Con-	
	viction	11
B.2	Counties that Signed 287(g) Agreements (2005-12) and Matched Controls	13
B.3	Detainers per Thousand Undocumented Immigrants, 287(g) vs. Control Counties	17
B.4	Difference-in-Differences Estimates, 3 to 8 Nearest Neighbor Matches	18

A Model of Collaborative Policymaking in a Federated System

I model a collaborative policymaking process in which a federal government and subnational governments may each contribute policy inputs, and an output is generated by a production function. Each of the governments has single-peaked preferences defined over the outputs. I am interested in how the outcomes and utilities realized under this regime compare to an alternative regime of centralized control, in which federal authorities unilaterally set policy in all jurisdictions and bear all the associated costs.

Players

- Jurisdictions $j \in \{L, H\}$, a low demander and a high demander
- Federal government f

Actions

- For the federal government, a contribution x_f ∈ ℝ₊ that represents a commitment of resources toward the implementation of a policy (e.g., immigration enforcement). Resource investment monotonically shifts policy in a certain ideological (e.g., restrictionist) direction. The federal government makes one uniform investment choice that applies to all jurisdictions; it cannot differentially target resources to specific regions.
- For each jurisdiction, a policy input $x_j \in \mathbb{R}_+$ that interacts with the federal government's choice of x_f to produce a policy output $y_j \in \mathbb{R}_+$.

Sequence of the Game

- 1. The federal government and local governments simultaneously make a choice of x_f and x_j for $j \in \{L, H\}$, respectively. They can all contribute any positive amount, or they can opt out and contribute nothing (no negative contributions).
- 2. A policy output is realized in each jurisdiction according to a production function $y_j = f(x_f, x_j)$.

Utilities

Both local and federal governments have single-peaked preferences over final policy outputs; they have ideal points \bar{y}_f or $\bar{y}_j \in \mathbb{R}_+$, with $\bar{y}_L < \bar{y}_H$. Each jurisdiction cares only about its own policy (no spillovers), while the federal government wants to minimize the sum of squared deviations from its ideal point across all jurisdictions.

Utilities are given by:

$$u_j(x_j) = -\frac{1}{2} (y(x_f, x_j) - \bar{y}_j)^2 - c_j(x_j) \text{ for } j \in \{L, H\}$$
(1)

$$u_f(x_f) = -\frac{1}{2} \sum_{j \in \{L,H\}} (y(x_f, x_j) - \bar{y}_f)^2 - 2c_f(x_f)$$
(2)

where $c_i(x_i)$ and $c_f(x_f)$ are cost functions.

Baseline Model

I fix initial conditions, costs, and production functions to be the same across jurisdictions, though the model can easily accommodate varying all these features. In the baseline model, only preferences over outputs vary. I consider a simple additive linear production function:

$$y(x_f, x_j) = x_f + x_j \tag{3}$$

where local and federal inputs are pure substitutes. I further assume common linear cost functions:

$$c_j(x) = c_f(x) = cx \tag{4}$$

Then, the utilities are:

$$u_j(x_j) = -\frac{1}{2} \left(x_j + x_f - \bar{y}_j \right)^2 - c x_j \tag{5}$$

$$u_f(x_f) = -\frac{1}{2} \sum_{j \in \{L, H\}} (x_j + x_f - \bar{y}_f)^2 - 2cx_f$$
(6)

Nash Equilibrium

There are four (interesting) generic equilibria of the model.¹

- I. Only f contributes. This equilibrium holds when:
 - i. $\bar{y}_f \geq \bar{y}_H$ ii. $c < \bar{y}_f$
- II. Only f and H contribute positive quantities, while L contributes nothing. This equilibrium holds when:
 - i. $(\bar{y}_L + \bar{y}_H)/2 < \bar{y}_f < \bar{y}_H$
 - ii. $\bar{y}_H < 2\bar{y}_f c$

¹Additional equilibria exist in which agents don't contribute only because the costs are too high; I focus on the equilibria where costs are sufficiently low relative to ideal points.

III. Only H contributes. This equilibrium holds when:

- i. $\bar{y}_H \ge 2\bar{y}_f c$ ii. $c < \bar{y}_H$ iii. $c \ge \bar{y}_L$
- IV. Only L and H contribute positive quantities, while f contributes nothing. This equilibrium holds when:
 - i. $\bar{y}_f < (\bar{y}_L + \bar{y}_H)/2$
 - ii. $c < \bar{y}_L$
 - iii. $c < \bar{y}_H$

There is additionally a knife-edge equilibrium in which all three actors contribute, which holds only when the federal ideal point is exactly at the midpoint between \bar{y}_H and \bar{y}_L .

The proceeding discussion shows that, other than this knife-edge case, there is no equilibrium in which all three players contribute (**Lemma 1**). Then it derives all other equilibria with positive contributions based on the first order conditions:

$$x_f^* \ge \bar{y}_f - \frac{x_L + x_H}{2} - c$$

$$x_H^* \ge \bar{y}_H - x_f - c$$

$$x_L^* \ge \bar{y}_L - x_f - c$$
(7)

which hold with equality if the contributions are positive.

Proof of Lemma 1

Lemma 1 states that there is no generic equilibrium in which all three players contribute. To see this, first suppose that both jurisdictions are contributing positive values. Then, their optimal contributions are given by:

$$x_{L}^{*}(x_{f}) = \bar{y}_{L} - x_{f} - c
 x_{H}^{*}(x_{f}) = \bar{y}_{H} - x_{f} - c
 \tag{8}$$

Writing the federal contribution as a function of x_L and x_H ,

$$x_f^* = \bar{y}_f - \frac{1}{2} \left(\bar{y}_L + \bar{y}_H - 2x_f^* - 2c \right) - c = \bar{y}_f - \frac{\bar{y}_L}{2} - \frac{\bar{y}_H}{2} + x_f^* \tag{9}$$

The only way that this equation can be satisfied is if $\bar{y}_f = \frac{\bar{y}_L + \bar{y}_H}{2}$; in that case, x_f^* can take any value. Since we need $x_L^* > 0$ and $x_H^* > 0$, there is an additional constraint on x_f^* in this knife-edge case such that $x_f^* < \bar{y}_L - c$.

Thus, the only way in which all three contribute is a continuum of equilibria satisfying the following profile:

i. x_f^* is any positive value less than $\bar{y}_L - c$

ii.
$$x_L^* = \bar{y}_L - x_f^* - c$$

iii.
$$x_H^* = \bar{y}_H - x_f^* - c$$

And this equilibrium holds under the condition that $\bar{y}_f = (\bar{y}_L + \bar{y}_H)/2$.

Equilibrium I: Only Federal Government Contributes

First, I consider the equilibrium in which only the federal government contributes, in which case the equilibrium contributions are given by:

$$\begin{aligned} x_f^* &= \bar{y}_f - c \\ x_L^* &= 0 \\ x_H^* &= 0 \end{aligned} \tag{10}$$

This federal contribution is positive as long as $\bar{y}_f > c$. Checking the conditions under which the jurisdictions will in fact contribute nothing:

$$x_j^* \le 0 \text{ when } \bar{y}_j - x_f^* - c \le 0 \implies \bar{y}_j - \bar{y}_f \le 0 \implies \bar{y}_f \ge \bar{y}_j$$
(11)

So as long as the federal government is the highest demander, and costs are sufficiently low, there is an equilibrium where the local governments all contribute nothing and the federal government contributes enough inputs to set policy at its ideal point, net of costs.

 $\underbrace{ \begin{array}{ccc} \bar{y}_L & \bar{y}_H & \bar{y}_f \\ \hline & & & & & \\ \hline \end{array} } \\ \hline \end{array}$

Equilibrium II: Federal Government and High Demander Contribute

The derivation of this equilibrium constitutes the **Proof of Proposition 1**.

Suppose the federal government and the high demander contribute positive inputs while the low demander contributes nothing. Then,

$$x_{f}^{*} = \bar{y}_{f} - \frac{x_{H}}{2} - c$$

$$x_{L}^{*} = 0$$

$$x_{H}^{*} = \bar{y}_{H} - x_{f} - c$$
(12)

Solving for H's equilibrium contribution,

$$x_{H}^{*} = \bar{y}_{H} - x_{f}^{*} - c = \bar{y}_{H} - \bar{y}_{f} + \frac{x_{H}^{*}}{2} \implies x_{H}^{*} = 2(\bar{y}_{H} - \bar{y}_{f})$$
(13)

This quantity is positive so long as H demands more than the federal government. Now, solving for f's equilibrium contribution,

$$x_f^* = \bar{y}_f - \frac{2(\bar{y}_H - \bar{y}_f)}{2} - c = 2\bar{y}_f - \bar{y}_H - c \tag{14}$$

So the federal government makes a positive contribution as long as $c < 2\bar{y}_f - \bar{y}_H$. Finally, checking the conditions under which jurisdiction L contributes nothing:

$$x_L^* = 0 \text{ when } \bar{y}_L - x_f^* - c < 0 \implies \bar{y}_L - 2\bar{y}_f + \bar{y}_H < 0 \implies \bar{y}_f > \frac{\bar{y}_L + \bar{y}_H}{2}$$
 (15)

Putting all of the conditions together, this equilibrium holds when:

(i)
$$\frac{\bar{y}_L + \bar{y}_H}{2} < \bar{y}_f < \bar{y}_H$$

(ii)
$$\bar{y}_H < 2\bar{y}_f - c$$
 (16)

For this equilibrium to hold, we need a high-demanding jurisdiction that wants more output—but not too much more—than the federal government. This result did not rely on the assumption that $\bar{y}_L < \bar{y}_H$; rather, this ordering emerged endogenously by Condition (i). This implies that in any equilibrium in which one jurisdiction and the federal government contribute, that jurisdiction *must be* the high demander.

Equilibrium III: Only High Demander Contributes

There is a third equilibrium where only H contributes some positive quantity while L and the federal government contribute nothing. In that case,

$$\begin{aligned} x_f^* &= 0\\ x_L^* &= 0\\ x_H^* &= \bar{y}_H - c \end{aligned} \tag{17}$$

The high demander's contribution is positive when $c < \bar{y}_H$. Deriving the conditions under which the federal government does not contribute:

$$x_f^* = 0 \text{ when } \bar{y}_f - \frac{x_H}{2} - c \le 0 \implies \bar{y}_f - \frac{\bar{y}_H - c}{2} - c \le 0 \implies \bar{y}_H \ge 2\bar{y}_f - c \tag{18}$$

Finally, L does not contribute when:

$$\bar{y}_L - x_f^* - c \le 0 \implies \bar{y}_L - c \le 0 \implies \bar{y}_L \le c$$
 (19)

Thus, this third equilibrium holds under the following conditions:

(i)
$$\bar{y}_H \ge 2\bar{y}_f - c$$

(ii) $c < \bar{y}_H$ (20)
(iii) $c \ge \bar{y}_L$

Equilibrium IV: Both Jurisdictions Contribute, Federal Government Does Not

Finally, there exists an equilibrium in which $x_f^* = 0, x_L^* > 0$, and $x_H^* > 0$. In that case,

$$\begin{aligned} x_f^* &= 0\\ x_H^* &= \bar{y}_H - c\\ x_L^* &= \bar{y}_L - c \end{aligned} \tag{21}$$

Deriving the conditions under which this holds,²

(i)
$$x_f^* = 0$$
 when $\bar{y}_f - \frac{x_L^* + x_H^*}{2} - c < 0 \implies \bar{y}_f - \frac{\bar{y}_L + \bar{y}_H}{2} < 0 \implies \bar{y}_f < \frac{\bar{y}_L + \bar{y}_H}{2}$
(ii) $x_L^* > 0$ when $c < \bar{y}_L$
(iii) $x_H^* > 0$ when $c < \bar{y}_H$
(22)

Thus, both jurisdictions contribute, and the federal government does not, when the federal government's ideal point falls below the two jurisdictions' midpoint.

Summary of Equilibria

In Figure A.1, I plot the four types of equilibrium as a function of $\bar{y}_f \in \{0, 2\}$ and $\bar{y}_L \in \{0, 1\}$, holding \bar{y}_H fixed at 1 and c fixed at 0.5.

 $^{^{2}}$ I use a strict inequality rather than a weak one in condition (i) here because I separately consider equality with zero in the knife-edge case discussed in Lemma 1.

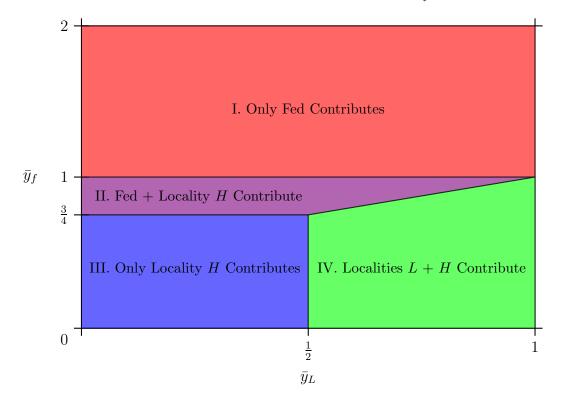


Figure A.1: Equilibria of the Model as a Function of \bar{y}_L and \bar{y}_f , $\bar{y}_H = 1$ and c = .5

Comparing Regimes

I now compare equilibrium policy outputs under the collaborative regime examined above and a regime of central control, in which federal authorities get to set policy in every jurisdiction and pay the associated cost. First, Table A.1 summarizes the equilibrium contributions for the collaborative regime and computes the policy output, in each jurisdiction and in the aggregate, corresponding to each equilibrium.

Table A.1: Equilibrium Contributions and Output Under Collaborative Regime

Equilibrium	x_L^*	x_H^*	x_f^*	y_L^*	y_H^*	y^*
Ι	0	0	$\bar{y}_f - c$	$\bar{y}_f - c$	$\bar{y}_f - c$	$2\bar{y}_f - 2c$
II	0	$2(\bar{y}_H - \bar{y}_f)$	$2\bar{y}_f - \bar{y}_H - c$	$2\bar{y}_f - \bar{y}_H - c$	$\bar{y}_H - c$	$2\bar{y}_f - 2c$
III	0	$\bar{y}_H - c$	0	0	$\bar{y}_H - c$	$\bar{y}_H - c$
IV	$\bar{y}_L - c$	$\bar{y}_H - c$	0	$\bar{y}_L - c$	$\bar{y}_H - c$	$\bar{y}_L + \bar{y}_H - 2c$

Now, deriving the federal government's equilibrium contribution to every jurisdiction under central control:

$$x_f^{c*} = \max(0, \bar{y}_f - c) \tag{23}$$

With low enough costs, this leads to an output of $y_L^{c*} = y_H^{c*} = \bar{y}_f - c$, for an aggregate output of $y^{c*} = 2\bar{y}_f - 2c$.

Proof of Proposition 2

Focusing on Equilibrium II—the one that most closely describes this paper's central empirical case we see that total output is the same under collaborative policymaking and central control. However, the collaborative regime leads to higher output in the high-demanding jurisdiction $(\bar{y}_H - c > \bar{y}_f - c)$, since $\bar{y}_f < \bar{y}_H$ in this case. In the low-demanding jurisdiction, the opposite is true: $2\bar{y}_f - \bar{y}_H - c < \bar{y}_f - c$, again by the assumption that $\bar{y}_f < \bar{y}_H$.

Next, I consider how the federal government's utility under the collaborative regime compares to a regime of centralized control. In equilibrium, federal utility under central control is:

$$u_f^c(x_f^{c*}) = -(x_f^{c*} - \bar{y}_f)^2 - 2cx_f^{c*}$$
(24)

As before, I fix c = .5 and $\bar{y}_H = 1$, and I focus on the set of cases where $\bar{y}_L < .5$ in order to isolate the high demanding jurisdiction's decision to contribute (the low demander will always opt out). For each value of $\bar{y}_f \in [0, 2]$, I compute the federal government's utility under a collaborative regime (in the corresponding equilibrium) and under a regime of central control.

When calculating the federal government's utility under the collaborative regime, we have to consider three regions.

I. $\bar{y}_f \in (1, 2]$

Since only the federal government contributes in this region, its utility is the same as it would be under the central regime:

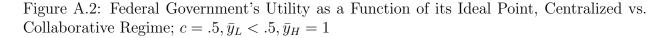
$$u_f(x_f^*) = -(x_f^* - \bar{y}_f)^2 - 2cx_f^*$$
(25)

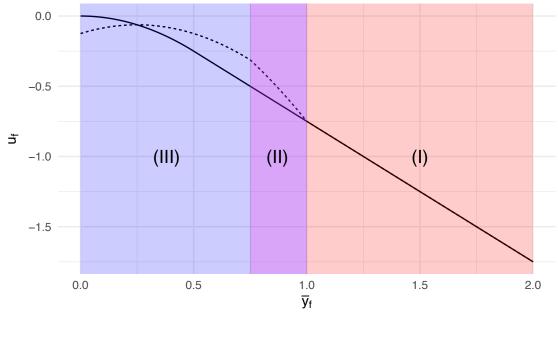
where $x_f^* = \max(0, \bar{y}_f - c)$.

II. $\bar{y}_f \in (\frac{3}{4}, 1]$

$$u_f(x_f^*) = -\frac{1}{2} \left[(x_H^* + x_f^* - \bar{y}_f)^2 + (x_f^* - \bar{y}_f)^2 \right] - 2cx_f^*$$

where $x_f^* = 2\bar{y}_f - \bar{y}_H - c$ and $x_H^* = 2(\bar{y}_H - \bar{y}_f)$.


III. $\bar{y}_f \in [0, \frac{3}{4}]$


$$u_f(x_f^*) = -\frac{1}{2} \left[(x_H^* - \bar{y}_f)^2 + (-\bar{y}_f)^2 \right]$$

where $x_H^* = \bar{y}_H - c$.

In Figure A.2, I plot the federal government's utilities under the collaborative regime and centralized control, with c = .5 and $x_H^* = 1$. The regions of the graph are shaded according to the prevailing equilibrium under the collaborative regime (as in Figure A.1). As the graph shows, the federal government benefits the most from the collaborative regime compared to centralized

control when its ideal point is lower than, but not too distant from, that of the high demanding jurisdiction.

— Centralized ---- Devolved

Proof of Proposition 3

Finally, I compare the federal government's utility under collaborative Equilibrium II and central control, without any further assumptions on the parameter values. Under centralized control, it has a total utility of:

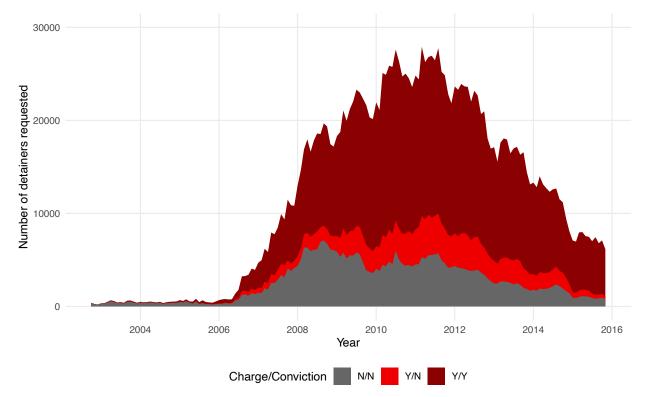
$$u_f^c(x_f^{c*}) = -(x_f^{c*} - \bar{y}_f)^2 - 2cx_f^{c*} = c^2 - 2\bar{y}_f c$$
(26)

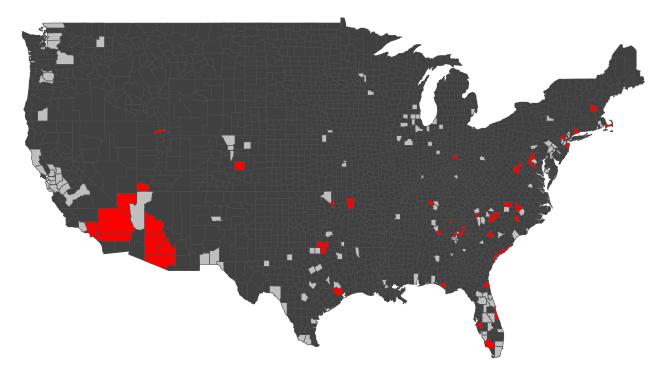
assuming again that $\bar{y}_f > c$. Under collaborative Equilibrium II, its utility is:

$$u_f(x_f^*) = -\frac{1}{2} \left((x_f^* + x_H^* - \bar{y}_f)^2 + (x_f^* - \bar{y}_f)^2) \right) - 2cx_f^* = -(\bar{y}_H - \bar{y}_f) + c^2 - 2c\bar{y}_H - 4c\bar{y}_f \quad (27)$$

Comparing these utilities, $u_f > u_f^c$ when $\bar{y}_H - \bar{y}_f < 2c$. Put simply, the federal government is better off under the joint-policymaking regime when the high-demanding jurisdiction's preferences are above, but sufficiently close to, its own.

B Additional Tables and Figures




Figure B.1: Monthly Number of Detainers Over Time, by Subsequent Criminal Charge and Conviction

Notes: This figure plots detainer requests issued (including those denied by the local jurisdiction), aggregated by month. Dark red represents detainers for which there was ultimately a criminal charge as well as a conviction; red represents detainers with a criminal charge but no conviction; gray represents detainers with no criminal charge or conviction.

Matched	
Number of	
) Signing, by N	
to 287(g)	
s in Year Prior	
Counties in Y	
Control	
eatment and (
f Tr	
·:	
₹ 	
Table B.1	Controls

	Treatment	Control, m=8	Control, $m=7$	Control, $m=6$	Control, $m=5$	Control, $m=4$	m=3
Population	646 468	500 070	610 210	V20 209	088 809	611 740	69K 077
TOUGH	0.04,242	099, 919	010,010	021,214	000,000	011,149	029,911
Undocumented (county-level estimate)	60,120	37,985	39,108	40,730	40,712	41,885	43,787
Percent foreign-born	12.6	14.7^{**}	14.8^{**}	15^{**}	15.3^{**}	15.5^{**}	15.6^{**}
Percentage point change in foreign-	1.7	1.1	1.1	1.2	1.2	1.2	1.2
born population, past 5 years							
Immigration Enforcement Outcomes							
Detainers not denied	148	153	152	164	172	164	163
Detainers not denied per 1000	6.3	5.4	5.4	5.7	5.5	5.5	5.2
undocumented immigrants							
Detainers not denied per 1000	2.6	1.7	1.7	1.7	1.7	1.6	1.5
foreign-born residents							
Detainers not denied, no criminal charge	29	49	47	50	52	48	45
Detainers not denied, criminal charge	25	35	35	38	40	38	38
but no conviction							
Detainers not denied, conviction	94	69	20	76	80	78	80
Detainers with criminal charge,	47	27	27	29	30	30	29
misdemeanor							
Detainers with criminal charge,	11	6	9	10	11	10	11
telouy (low)							
Detainers with criminal charge, felony (high)	40	38	39	43	46	44	48
Detainers with criminal charge, traffic offense	21	6	6	10	10	10	6

Figure B.2: Counties that Signed 287(g) Agreements (2005-12) and Matched Controls

Notes: The 56 counties in the treatment sample are shown in red. The 151 matched controls that are used throughout the analysis are shown in light gray.

State	County	Sign Date	State	County	Sign Date
AL	Etowah County	2008-07-08	NC	Gaston County	2007-02-22
AR	Benton County	2007-09-26	NC	Guilford County	2009-10-15
AR	Washington County	2007-09-26	NC	Henderson County	2008-06-25
AZ	Maricopa County	2007-02-07	NC	Mecklenburg County	2006-02-27
AZ	Pima County	2008-03-10	NC	Wake County	2008-06-25
AZ	Pinal County	2008-03-10	NH	Hillsborough County	2007-05-05
AZ	Yavapai County	2008-03-10	NJ	Hudson County	2008-08-11
CA	Los Angeles County	2005-02-01	NJ	Monmouth County	2009-10-15
CA	Orange County	2006-11-02	NJ	Morris County	2010-01-05
CA	Riverside County	2006-04-28	NV	Clark County	2008-09-08
CA	San Bernardino County	2005-10-19	OH	Butler County	2008-02-05
CO	El Paso County	2007-05-17	OK	Tulsa County	2007-08-06
CT	Fairfield County	2009-10-15	\mathbf{SC}	Beaufort County	2008-06-25
FL	Bay County	2008-06-15	\mathbf{SC}	Charleston County	2012-01-01
FL	Brevard County	2012-01-01	\mathbf{SC}	Lexington County	2012-01-01
FL	Collier County	2007-08-06	\mathbf{SC}	York County	2007-10-16
FL	Duval County	2008-07-08	TN	Davidson County	2007-02-21
FL	Manatee County	2009-01-01	ΤХ	Collin County	2008-08-12
GA	Cobb County	2007-02-13	ΤХ	Dallas County	2008-07-08
\mathbf{GA}	Gwinnett County	2009-10-15	ΤХ	Denton County	2008-08-12
GA	Hall County	2008-02-29	ΤХ	Harris County	2008-07-20
\mathbf{GA}	Whitfield County	2008-02-04	UT	Washington County	2008-09-22
MA	Barnstable County	2007-08-26	UT	Weber County	2008-09-22
MD	Frederick County	2008-02-06	VA	Fairfax County	2007-03-21
NC	Alamance County	2007-01-10	VA	Loudoun County	2008-06-25
NC	Cabarrus County	2007-08-02	VA	Manassas City	2008-03-05
NC	Cumberland County	2009-01-01	VA	Rockingham County	2007-04-25
NC	Durham County	2008-02-01	VA	Shenandoah County	2007-05-10

Table B.2: Counties Included in Treatment Group in Difference-in-Differences Analysis

Notes: This table lists the 56 counties within which an LEA signed a 287(g) agreement for the first time at any point before the end of 2012. One county in which an agreement was signed during this period—Prince William County, VA—is omitted from the treatment group because it has no associated detainer data.

State	County	State	County	State	County
AL	Madison County	GA	Clayton County	NE	Douglas County
AL	Marshall County	\mathbf{GA}	Douglas County	NE	Lancaster County
AL	Mobile County	\mathbf{GA}	Fayette County	NJ	Bergen County
AL	Montgomery County	\mathbf{GA}	Fulton County	NJ	Camden County
AZ	Mohave County	\mathbf{GA}	Muscogee County	NJ	Essex County
CA	Alameda County	\mathbf{GA}	Richmond County	NJ	Middlesex County
CA	Contra Costa County	HI	Maui County	NJ	Somerset County
CA	Fresno County	IL	Kane County	NM	Bernalillo County
CA	Mendocino County	IL	Lake County	NM	Dona Ana County
CA	Merced County	IL	Lee County	NM	Luna County
CA	Sacramento County	IL	McHenry County	NY	Broome County
CA	San Francisco County	IL	McLean County	NY	Queens County
CA	San Joaquin County	IL	Peoria County	NY	Kings County
CA	San Mateo County	IL	Will County	NY	Richmond County
CA	Santa Clara County	IL	Winnebago County	NY	Rockland County
CA	Santa Cruz County	IN	Elkhart County	OH	Athens County
CA	Solano County	IN	Marion County	OK	Bryan County
CA	Sonoma County	IN	Porter County	OK	Osage County
CA	Stanislaus County	IN	Tippecanoe County	OR	Clackamas County
CA	Ventura County	IN	Vanderburgh County	OR	Jackson County
CA	Yolo County	\mathbf{KS}	Johnson County	OR	Marion County
CO	Boulder County	\mathbf{KS}	Wyandotte County	OR	Multnomah County
CO	Jefferson County	KY	Fayette County	PA	Berks County
CO	Larimer County	\mathbf{LA}	Ascension Parish	PA	Chester County
CO	Morgan County	LA	Bossier Parish	PA	Delaware County
DC	District of Columbia	LA	East Baton Rouge Parish	PA	Cumberland County
DE	New Castle County	MA	Bristol County	PA	Montgomery County
FL	Alachua County	MA	Suffolk County	\mathbf{SC}	Greenville County
FL	Broward County	MD	Dorchester County	\mathbf{SC}	Horry County
FL	Charlotte County	MD	Montgomery County	\mathbf{SC}	Lexington County
FL	Flagler County	MD	Prince George's County	\mathbf{SC}	Spartanburg County
FL	Highlands County	MI	Berrien County	\mathbf{SC}	Sumter County
FL	Lake County	MI	Macomb County	TN	Rutherford County
FL	Lee County	MN	Anoka County	TN	Shelby County
FL	Marion County	MN	Olmsted County	TN	Wilson County
FL	Martin County	MN	Washington County	TX	Bexar County
FL	Miami-Dade County	MO	St. Charles County	TX	Brazos County
FL	Okaloosa County	NC	Buncombe County	TX	Coryell County
FL	Osceola County	NC	Catawba County	TX	El Paso County
FL	Polk County	NC	Cleveland County	TX	Harris County
FL	Putnam County	NC	Johnston County	ТΧ	Hidalgo County
FL	Volusia County	NC	New Hanover County	ΤХ	Maverick County
GA	Bibb County	NC	Randolph County	ΤХ	McLennan County

Table B.3: Counties Included in Control Group in Difference-in-Differences Analysis

Table B.3 (cont.): Counties Included in Control Group in Difference-in-Differences Analysis

State	County	State	County	State	County
ΤХ	Midland County	ΤХ	Titus County	WA	King County
TX	Montgomery County	ΤX	Travis County	VA	Alexandria City
TX	Nueces County	ΤX	Val Verde County	WA	Snohomish County
TX	Parker County	VA	Arlington County	WA	Spokane County
TX	Smith County	VA	Chesapeake City	WA	Whatcom County
TX	Starr County	VA	Chesterfield County	WA	Yakima County
TX	Tarrant County	VA	Fairfax City	WI	Waukesha County
TX	Taylor County		·	1	

Notes: This table lists the 151 unique counties that were selected as matches for the treatment group.

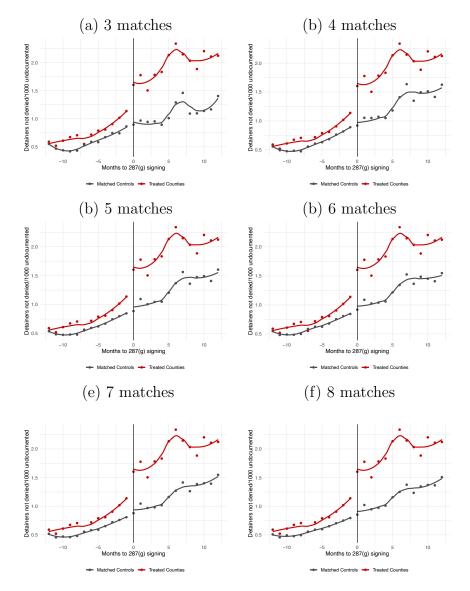


Figure B.3: Detainers per Thousand Undocumented Immigrants, 287(g) vs. Control Counties

Notes: Points represent means within bins for every time period from t = -12 to t = 12 months from first 287(g) signing. Treated units, defined as those that signed a 287(g) agreement from 2005 to 2012, are shown in red, and matched control counties are shown in gray. Plotted outcome is the number of detainers issued that were not denied by the LEA, scaled by the estimated number of undocumented immigrants in the jurisdiction (in thousands) and aggregated by month. Loess-smoothed lines are fitted through the data on each side of t = 0.

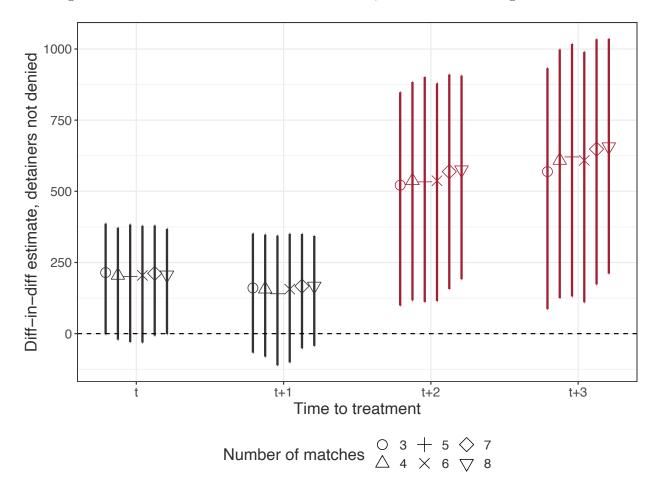


Figure B.4: Difference-in-Differences Estimates, 3 to 8 Nearest Neighbor Matches

Notes: Points represent estimates; lines represent 95% confidence intervals.

Table B.4: Effects of First-Time 287(g) Signing on Detainers Honored, Difference-in-Differences Estimates, Using Estimates of Foreign-Born Instead of Undocumented Immigrants for Matching

	t	t+1	t+2	t+3
Number of detainers, not denied	230.2	236.9	671.2^{**}	778.4^{**}
	(118.7)	(113.7)	(203.7)	(227.2)
Number of detainers, not denied	6.3	12.6^{*}	17.7^{**}	18.4^{**}
per 1000 undocumented immigrants	(3.1)	(5.4)	(6.7)	(7.3)
Number of detainers, not denied	2.8^{*}	6.3^{*}	7.7^{**}	7.5^{**} (2.5)
per 1000 foreign-born residents	(1.2)	(2.0)	(2.3)	

Notes: *p<0.05; **p<0.01; ***p<0.001. Standard errors computed based on 1,000 weighted bootstrap samples are shown below estimates.

Table B.5: Effects of First-Time 287(g) Signing on Detainers Honored, Difference-in-Differences Estimates, Placebo Test

	t-2	t-1
Number of detainers, not denied	-21.7 (17.4)	0.0
Number of detainers, not denied per 1000 undocumented immigrants	1.1 (1.4)	1.8 (2.1)
Number of detainers, not denied per 1000 foreign-born residents	0.7 (0.6)	1.2 (0.9)

Notes: *p<0.05; **p<0.01; ***p<0.001. Standard errors computed based on 1,000 weighted bootstrap samples are shown below estimates. Estimates are computed relative to year t - 3.