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Abstract: Political scientists frequently interpret the results of conjoint experiments as reflective of majority preferences. In
this article, we show that the target estimand of conjoint experiments, the average marginal component effect (AMCE),
is not well defined in these terms. Even with individually rational experimental subjects, the AMCE can indicate the
opposite of the true preference of the majority. To show this, we characterize the preference aggregation rule implied by
the AMCE and demonstrate its several undesirable properties. With this result, we provide a method for placing bounds
on the proportion of experimental subjects who prefer a given candidate feature. We describe conditions under which the
AMCE corresponds in sign with the majority preference. Finally, we offer a structural interpretation of the AMCE and
highlight that the problem we describe persists even when a model of voting is imposed.

Verification Materials: The data and materials required to verify the computational reproducibility of the results, pro-

cedures, and analyses in this article are available on the American Journal of Political Science Dataverse within the
Harvard Dataverse Network, at: https://doi.org/10.7910/DVN/DROYF2.

onjoint experiments have become a standard
part of the political scientist’s tool kit. Across the
top scholarly journals, political scientists regu-
larly interpret the results of these experiments to make
empirical claims about both majority preferences and
electoral outcomes. In this article, we show that the target
estimand of conjoint experiments, the average marginal
component effect (AMCE), does not typically support
such claims. This occurs because the AMCE averages
over two aspects of individual preferences: their direction
(whether an individual prefers A to A’) and their inten-
sity (how much they prefer Ato A’). In so doing, it assigns
greater weight to voters who intensely prefer a particular
outcome.
This article clarifies the connection between the
AMCE and the substantive quantities of interest that po-
litical scientists frequently seek to recover in preference-

elicitation experiments. First, we illustrate by way of a
simple example how the AMCE aggregates individual
choices. Thus, we show how it can prove misleading for
identifying proportions of voters who favor particular
features—an inference researchers implicitly make when
they summarize population preferences (e.g., “Americans
prefer highly educated immigrants”), characterize elec-
toral majorities (e.g., “voters want a lower tax rate”), or
project winners of elections (e.g., “the Democratic Party
would be well served to nominate a female candidate”).
Having established the substantive claims that it can-
not support, we turn to an analysis of three valid in-
terpretations of the AMCE. The first is as a change in
expected vote share. We advise caution for researchers
who wish to proceed with this interpretation. First, the
average vote share does not imply other, more intuitive
measures of electoral advantage. We show through our
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PREFERENCES IN CONJOINT EXPERIMENTS

running example that there can exist underlying pref-
erence distributions that produce an average vote share
that favors A over A’ where, nevertheless, A’ beats A in
the vast preponderance of elections. Far from being a
statistical artifact, preference distributions of this form
are pervasive: They reflect populations in which a mi-
nority intensely prefers an alternative, whereas a majority
has a mild preference for its opposite. Second, the aver-
age vote share is only valid with respect to the particular
randomization scheme defined by the experimenter. In
other words, the averaging implied by this interpretation
is over the set of electoral contests between candidates
defined internally to the experimental design. So unless
researchers have theoretical reasons to care about the
mean election in the particular set of contests their ex-
periment implies, this interpretation is unlikely to prove
informative.

Next, we highlight a second valid interpretation of
the AMCE characterizing the mapping between it and
the Borda rule, a preference aggregation mechanism that
picks a winner based on voters’ rankings of alternatives.
We prove that the AMCE can be used to make state-
ments about winners of Borda-rule elections. Of course,
not many real-world contests are decided by this proce-
dure.! This leads us to ask what further inferences about
the underlying distribution of voter preferences we can
draw from the AMCE. In doing so we provide a method
that, for an estimated AMCE, allows researchers to place
bounds on the proportion of experimental subjects who
maintain a strict preference for a candidate feature. We
close this discussion with a sufficient condition under
which the AMCE indicates a majority preference: when
the direction and intensity of voters’ preferences are
uncorrelated.

Finally, we explore the relationship between the
AMCE and a simple model of choice. In providing this
structural foundation for the AMCE, we show that it
supports a third interpretation: an average of individual
ideal points over candidate features. Typically, elections
are decided by the median voter’s ideal point. Although a
class of probabilistic voting models does rely on the mean
preference to characterize equilibria, the relevance of the
mean ideal point in these models depends on a set of
strong assumptions. Among these is, crucially, that can-
didates know voters’ preferences up to a random shock.
The purpose of conjoint experiments, however, is to un-
cover exactly these preferences.

Our analysis highlights the importance of placing
theoretical structure on the estimands used in applied

'Examples include some elections in Slovenia and Kiribati and vot-
ing for the Heisman Trophy and Eurovision Song Contest.
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empirical work. Although methods in this literature are
often lauded for being “model free,” we emphasize that
any estimand that aggregates preferences is by its very
nature a social choice rule. Without theories describ-
ing the mapping of individual preferences to observed
choices, as well as their aggregation, nonparametric esti-
mates of population preferences are difficult to interpret
substantively.

Invalid Interpretations of the AMCE

The goal of factorial designs like those in forced-choice
conjoint experiments is to mimic the complex com-
parisons faced by real-world decision makers.? By ran-
domizing a large number of candidate and platform
features, political scientists aim to construct realistic ap-
proximations of the choices voters face. With repeated
observations of these randomized features and respon-
dents’ choices, the AMCE can be computed via a sim-
ple difference-in-means or least squares regression and
is defined as the average effect of varying one attribute
of a candidate profile, for example, the race or gender of
the candidate, from A to A’, on the probability that the
candidate will be chosen, where the expectation is taken
over the distribution of the other attributes as well as over
respondents.

This quantity is commonly used to make claims
about voters’ preferences for particular policies, such
as “Americans express a pronounced preference for
immigrants who are well educated, are in high-
skilled professions, and plan to work upon arrival”
(Hainmueller and Hopkins 2015, p. 245), and “[there is]
strong evidence for progressive preferences over taxation
among the American public” (Ballard-Rosa, Martin,
and Scheve 2017, p. 14). Conjoint results are also used
to make statements about candidates for elected office,
such as “voters do not appear to prefer older politicians
or celebrities, and are indifferent with regard to dynas-
tic and family ties and gender” (Horiuchi, Smith, and
Yamamoto 2020, p. 86), and “voters and legislators do

*Throughout, we focus on forced-choice conjoint experiments as
the most common implementation in political science. Another
popular implementation involves using scales (or thermometers)
as the response variable. We are unaware of a microfoundation of
choice behavior when responses take a range of values such that it
would allow a theoretical exploration similar to this article. This
does not imply that our critique only applies to forced-choice con-
joint experiments. If, for example, respondents partition the scale
such that there is a one-to-one mapping between disjoint ranges
of scores and unique candidates, then the results we present for
the forced-choice setup carry through exactly.
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not seem to hold female candidates in disregard; all else
equal, they prefer female to male candidates” (Teele,
Kalla, and Rosenbluth 2018, p. 537).°

Although statements of the form “voters prefer A
to A”” have many possible meanings,* a reasonable in-
terpretation is that there are more voters who prefer
A to A’ than vice versa. To make such a statement, it
would suffice to say that the median voter prefers A to
A’. But the representative voter whose preferences are
captured by the AMCE is not the median; that voter is
the average over both the intensive and extensive mar-
gins of choice. Outside of fantastical institutional designs
(e.g., Lalley and Weyl 2018), electoral contests are not
typically swayed by how much a subset of voters prefers
a given candidate; rather, elections are won—and vot-
ing populations are most straightforwardly described—
by how many voters prefer each candidate.

Here, we work through an example that begins
with voter preferences, translates those preferences into
observed choices, and aggregates those choices to the
AMCE. The example is designed to build intuition
around the AMCE’s underlying preference aggregation
mechanism, and to illustrate how a positive AMCE can
be inconsistent with a number of majoritarian claims.
Throughout, we aim to make as few assumptions about
the underlying preferences of individual voters as possi-
ble. While we view the assumptions we make as benign,
we note that if the AMCE exhibits undesirable properties
under these assumptions, placing even less structure on
the problem will not rectify whatever issues we identify
and only obscure what drives them. Furthermore, we em-
phasize that we are agnostic about the content of voters’
preferences. Individuals may be self-interested, other-
regarding, or some mixture thereof. We impose only that
individual preferences are complete and transitive.’

Since researchers who use conjoint experiments seek
to characterize preference relations over candidate fea-
tures, we define our primitives over this space. For sim-
plicity, consider an electorate of five voters (V1, V2, V3,

3We conducted a review of conjoint analyses published in top po-
litical science journals and found that 83% of all articles using con-
joint experiments make direct reference to voter preferences and
51% interpret their findings in the context of elections. This is de-
scribed in Table G1 in the supporting information (SI).

Do researchers mean to say that there exist some voters who prefer
A to A’? That most voters prefer A to A’? That all voters prefer A to
A7

5Formally, completeness is defined as x = y, y = x or both, and
transitivity is defined asif x = yand y = z, then x = z. We definea
strict preference relation as x > y if and only if x >= y and noty = x
and henceforth refer to this definition when we write “preference.”
To vastly simplify the presentation, we rule out indifference, as is
standard in the social choice literature.
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TABLE 1 Preferences over Attributes

Vi1 V2 V3 V4 V5
M>F M >F M >F F>~M F>~M
R>=D R>=D R>=D D>R D >R

Note: This table gives voters’ preferences over attributes. Candi-
dates are described by two attributes: gender € {F, M} and party
€ {D, R}. Voters 1, 2, and 3 prefer male to female candidates
and Republicans to Democrats; voters 4 and 5 have the opposite
preferences.

V4, V5). Candidates possess two attributes that are rele-
vant to voters: their gender (female or male), denoted by
G € {E M}, and their party (Democrat or Republican),
denoted P € {D, R}. Each candidate is an ordered pair
of gender and party, so that there are four different can-
didate profiles: FD, FR, MD, and MR. The voters’ pref-
erences over attributes are given in Table 1. It can easily
be seen that a majority of voters prefer male candidates
to female candidates, and a majority of voters prefer Re-
publican candidates to Democratic candidates.

We construct preferences over candidates from pref-
erences over attributes in the following way: Voters pre-
fer candidates who have both of the attributes they like to
those who have one attribute they like, which in turn they
prefer to candidates who have neither of the attributes
they like. Notice that there are two types of candidates
that have only one attribute that matches a voter’s prefer-
ence. For these candidates, whether a voter prefers one or
the other depends on which attribute has a greater weight
for the voter. For example, if a voter places more weight
on gender, we would expect them to choose a candidate
who has their preferred gender but not their preferred
party over a candidate who has their preferred party but
not gender.

In this simple setting, we can use the weight re-
lation > to indicate that an attribute is given greater
weight in determining a voter’s preference ordering. Ac-
cordingly, we assume that voters 1, 2, and 3 place more
weight on the candidate’s party (P >> G), whereas voters
4 and 5 place more on the candidate’s gender (G >> P).°
Combining weights with preferences over attributes, we
can produce voters’ preferences over candidate profiles.
These are presented in Table 2. Given these preferences,
in Table 3 we present the votes candidates would obtain

®Note that these relative weights are meaningful within individu-
als but cannot be compared across respondents. That the minority
care more intensely about gender than party does not imply that
they care more intensely about gender than do the majority. The
weights therefore cannot speak to which group’s turnout or candi-
date choice will be more influenced by a change along the relevant
dimension.
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PREFERENCES IN CONJOINT EXPERIMENTS

TABLE 2 Preferences over Candidate Profiles

Rank V1 V2 V3 V4 V5
1 MR MR MR FD FD
2 FR FR FR FR FR
3 MD MD MD MD MD
4 FD FD FD MR MR

Note: This table presents preferences over profiles constructed
from preferences over attributes.

in each head-to-head election for every possible pairwise
comparison; the winner is boldfaced in the first column.

Next, we derive the AMCE for male over female can-
didates, following Proposition 3 from Hainmueller, Hop-
kins, and Yamamoto (2014). The intuition behind the
comparisons being made when estimating the AMCE is
given in Figure 1. Here, Y (C;, G,) denotes the number
of votes candidate C; obtains when running against can-
didate C,. For each contest we can obtain Y from the last
column of Table 3. To obtain the AMCE for males, we
compare how male candidates (column 1) fare relative to
female candidates (column 2) when they run against the
same opponent, then sum this difference over all possible
opponents. Finally, this sum is normalized by the num-
ber of possible profiles (four) times the number of possi-
ble profiles with a given gender (two) times the number
of voters (five). The procedure yields an AMCE for male
equal to —1/20, meaning that the average probability of
being chosen is higher for female candidates than it is for
male candidates.

Our toy example illustrates the intuition driving our
main result. Notice that the AMCE for male candidates is
negative (thus, the AMCE for female candidates is posi-
tive), and yet the following statements do not hold:

TABLE 3 Aggregate Preferences over Candidate
Profiles

Comparison V1 V2 V3 V4 V5 Tally

MR, FR MR MR MR FR FR 3,2
MR, FD MR MR MR FD FD 3,2
MR, MD MR MR MR MD MD 3,2
MD, FR FR FR FR FR FR 0,5
MD, FD MD MD MD FD FD 3,2
FR, FD FR FR FR FD FD 3,2

Notes: First column presents all possible head-to-head compar-
isons (with the winner of each contest indicated in bold). Columns
V1-V5 show each voter’s preferred candidate. Tally column sum-
marizes the number of votes received by each candidate in each
head-to-head comparison.
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FIGURE1 Obtaining the AMCE

Y(MR,MD) — Y(FR,MD) = -2
Y(MR,FD) - Y(FR,FD) = 0
Y(MR,MR) — Y(FR,MR) = 1/2
Y(MR,FR) - Y(FR,FR) = 1/2
Y(MD,MD) — Y(FD,MD) = 12
Y(MD,FD) - Y(FD,FD) = 1/2
Y(MD,MR) — Y(FD,MR) = 0
Y(MD,FR) - Y(FD,FR) = -2
-2
(# of profiles) x (# of voters) = 40

X (# of profiles with a given gender )
AMCE = -1/20

Notes: Computing the AMCE for male over female
candidates based on the aggregate preferences sum-
marized in Table 3. Y(C;, C,) denotes the number of
votes candidate C; obtains when running against can-

didate G,.

(1) A majority of voters prefer female to male
candidates.

As Table 1 indicates, a majority of voters (three out of
five) prefer males to females.

(2) A majority of voters prefer female to male can-
didates, all else equal.

As Table 2 indicates, fixing party at R, three out of five
voters prefer the male candidate (MR) to the female
candidate (FR). The same goes for MD over FD.

(3) Female candidates beat male candidates in
the majority of possible head-to-head electoral
contests.

As Table 3 indicates, men win four of the six possible
elections.

(4) Female candidates beat male candidates in
the majority of possible all-else-equal head-to-
head electoral contests.

Table 3 also shows that in all-else-equal races (MR vs.
FR and MD vs. FD), the male candidate always
wins.

The AMCE produces an estimate that indicates the
opposite of these majoritarian statements because the
minority, who place the greatest weight on the gender
dimension, also have a preference for female candidates,
whereas the majority, who prefer men, place less weight
on gender than party when making their decisions. When
aggregating preferences over gender, the AMCE mechan-
ically assigns greater weight to the minority, who strongly
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prefer women. Crucially, this result is a feature of the
target estimand and is not a problem of estimation.
Our example is analogous to a survey in which each re-
spondent is asked to evaluate all possible head-to-head
comparisons.

Three Valid Interpretations of the
AMCE

Expected Vote Share

One might think to interpret the AMCE as the expected
change in vote share associated with a given candidate
feature.” To see this, note that each row of Figure 1 is sim-
ply the difference in votes that otherwise identical men
and women receive in pairs of elections with a fixed op-
ponent. Averaging over the total number of voters and
the set of elections defined by the experiment yields the
average change in vote share associated with a candidate’s
being male. It is also exactly equivalent to the AMCE of
male over female.

While it is correct to interpret the AMCE as a change
in expected vote share, doing so runs into the same
aggregation problem that we highlighted in our example.
The negative change in expected vote share in our exam-
ple is driven by one landslide election, MD versus FR,
where the female candidate wins 5—0. In all other con-
tests, the female candidate loses—just by a smaller mar-
gin. Thus, out-of-sample predictions and claims about
the relative electability of specific candidates are no more
warranted under this interpretation of the AMCE than
any of the others we have discussed.

What is more, the change in expected vote share is
defined over the specific set of elections determined by
the randomization scheme. The sign and magnitude of
the AMCE vary with the attributes included in the ex-
perimental design, holding fixed the experimental subjects
and their preferences. This occurs because the inclusion
of a new attribute may change the relative rankings of
candidates with respect to the other, previously included
attributes.

To see this, consider the same population of five vot-
ers as in our previous example. However, instead of con-
ducting an experiment where we randomize only party
and gender, we now include a third attribute, race, which
for simplicity takes on only two values, black or white.
Denote this R € {B, W}. Let voters 1, 2, and 3 have the
preference W > B and voters 4 and 5 have the prefer-
ence B > W. Furthermore, let voters 1, 2, and 3 place
the greatest weight on party, then gender, then race (P >

’On this point, see Bansak et al. (2022).

SCOTT F. ABRAMSON, KORHAN KOCAK, AND ASYA MAGAZINNIK

G > R) , and let voters 4 and 5 place the greatest weight
on race, then gender, then party (R>» G > P). Asin
the previous section, we can produce a full ranking of
candidate profiles using this combination of weights and
preferences. Voters most prefer candidates with all three
of their preferred features and least prefer those with
none of their preferred features. Among candidates who
have two of the three features they prefer, they rank can-
didates with their first and second most preferred feature
first, first and third most preferred features second, and
second and third most preferred features third. Finally,
we assume that voters prefer all candidates with two pre-
ferred features to all candidates with just one preferred
feature. Preferences over candidates are given in Table 4.
Since these are the same exact voters from the pre-
vious example, their preferences with respect to gender
have not changed: Three out of five of them prefer men
to women. As before, men win a large majority of elec-
tions.> However, in contrast with our previous example,
instead of always ranking female candidates above male
candidates, voters 4 and 5 will now be willing to accept a
man in some contests because they place more weight on
race than gender. Since including race changes the rela-
tive ranking of male and female candidates, it changes the
AMCE researchers would derive from this experiment.
Again we calculate the AMCE, yielding 1/16—the exact
opposite of the substantive result from the previous ex-
periment, where we considered only gender and party.’
We have therefore shown that even with identical
subjects, the results researchers obtain from conjoint ex-
periments depend upon the specific set of profiles in-
cluded in their experimental design and thereby the par-
ticular set of elections implied by this design. In the next
section, we provide further insight into this sensitivity
by showing a direct mapping between the AMCE and
the Borda rule, which fails to satisfy the independence
of irrelevant alternatives axiom (IIA). That is, the Borda
winner—and thereby the AMCE—a researcher obtains
from a given experiment changes when she removes par-
ticular candidates from the contest, such as when she re-
stricts the randomization to exclude particular feature
combinations.!” In this way, we provide a microfoun-
dation for the results of de la Cuesta, Egami, and Imai
(2022), who highlight the sensitivity of the AMCE to the
randomization scheme imposed by researchers. We show

8Male candidates win 13 of the 16 elections in which they face off
against female candidates, and 19 of the 28 overall contests.

*Trivially, we could add a fourth attribute and again flip the sign of
the AMCE. In SI Section B, we provide simple R code to perform
this and similar calculations.

1%In SI Section B, we also provide an example of this IIA violation
wherein the sign of the AMCE changes depending on which feature
combinations are excluded.
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TABLE 4 Preferences over Candidate Profiles: Example Part I1

Rank V1 V2 V3 V4 V5

1 MRW MRW MRW FDB FDB

2 MRB MRB MRB FRB FRB

3 FRW FRW FRW MDB MDB
4 MDW MDW MDW FDW FDW
5 FRB FRB FRB MRB MRB
6 MDB MDB MDB FRW FRW
7 FDW FDW FDW MDW MDW
8 FDB FDB FDB MRW MRW

Note: This table presents preferences over profiles constructed from preferences over attributes, including race.

that this is not just a statistical property of the AMCE,
but a core theoretical feature of the aggregation mecha-
nism that generates this quantity.

Borda Rule Elections

Since the objective of conjoint experiments is to con-
struct a mapping from individual to aggregate prefer-
ences, we build on the literature in positive political the-
ory that formally evaluates mechanisms that do just that.
That is, we characterize the AMCE as a preference ag-
gregation rule—a mapping from individual to aggregate
preferences (Austen-Smith and Banks 2000, 26). This ex-
ercise reveals that the AMCE is closely related to the
Borda rule, a voting system that assigns points to can-
didates according to their order of preference. We build
on this result to provide a method that, for a given AMCE
estimate, allows researchers to place bounds on the pro-
portion of experimental subjects who maintain a strict
preference for a candidate feature.

Borda rule voting is implemented as follows. With
K candidates, the Borda rule assigns zero points to each
voter’s least preferred candidate, one point to the candi-
date preferred to that but no other, and so on until the
most preferred candidate receives K — 1 points. Thus,
for each voter, the Borda score contributed to a candidate
corresponds to the number of other candidates to whom
he or she is preferred. This in turn is equal to the number
of times that candidate would be chosen if the voter were
presented with every possible binary comparison. A can-
didate’s Borda score is the sum of the individual Borda
scores assigned to that candidate by each voter, and it is
thus equal to the total number of times that candidate
would be chosen if each voter were subjected to each bi-
nary comparison. This is summarized in Lemma 1.

Lemma 1. The Borda score of each profile is equal to the
total number of times that profile is chosen in all pairwise
comparisons.
Proof. All proofs are in the appendix in the supporting
information.

In the context of conjoint experiments, we further de-
fine the Borda score of a feature as the sum of the Borda
scores of each profile that has that feature. For exam-
ple, the Borda score of “female” is the sum of the Borda
scores of all female candidates. This definition allows us
to state our first main result that connects the AMCE to
the Borda rule.

Proposition 1. The difference in the Borda scores of two
features is proportional to the AMCE.

The intuition for the proof of Proposition 1 follows from
Lemma 1 and the observation that Borda and AMCE ag-
gregate preferences in analogous ways. They both tally
the number of alternatives that are defeated by candi-
dates with a given feature and then use that tally to com-
pare across features. The AMCE is constructed by taking
the difference of these tallies and normalizing them. In
the appendix, we walk through the steps of how to get to
AMCE from Borda scores, producing the same expres-
sion as the AMCE in Equation 5 of Hainmueller, Hop-
kins, and Yamamoto (2014, IV).

This connection between the Borda rule and the
AMCE is important because the Borda rule has sev-
eral undesirable properties that the AMCE inherits—
properties that were already revealed in our initial ex-
ample. The Borda rule violates the independence of ir-
relevant alternatives (IIA) criterion, which states that the
relative ranking of two candidates should not depend on
the inclusion of another candidate. We demonstrate how
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different sets of candidates can lead to different AMCE
estimates. A second social choice property of the Borda
rule is that it violates the majority criterion, which states
that if a majority of voters prefers one candidate, then
that candidate must win. This property also extends to
attributes. In our example, we showed that a majority of
voters prefers male to female candidates, but the AMCE
of male over female is negative. In linking the AMCE
to the Borda rule, we have now shown that this viola-
tion of the majority criterion is a more general prop-
erty of the AMCE’s underlying preference aggregation
mechanism.

The relationship between the AMCE and the Borda
rule can usefully be leveraged to derive bounds on the
fraction of the population that prefers a feature. That is,
for a given AMCE, total number of possible candidate
profiles in the experiment, and number of values the at-
tribute of interest can take, we can characterize the max-
imum and minimum fractions of voters who might pre-
fer that feature over the baseline. Our next result presents
these bounds. For simplicity, we assume that preferences
are separable—that is, voters have unconditional pref-
erences over candidate features; we discuss what hap-
pens when we relax this assumption at the end of this
section.!!

Proposition 2. Let y denote the fraction of voters who pre-
fer t; over ty. Given an AMCE of m(#, ty), it must be that

T (t, H)TK+T
y€|max{—————, O,
K(t—1)+r=

. m(n, H)TK+K(t—1)

min , 18],
K(t—1)+r=

where t is the number of distinct values the attribute of in-

terest can take.

To find these bounds, all we need to calculate are the
range of possible Borda scores a respondent can con-
tribute to a feature (as a function of the total number of
possible profiles) and the number of distinct values the
attribute of interest can take. First, we assume that the
attribute of interest has the highest possible importance
for all supporters of the feature of interest, that is, the re-
spondents who prefer it over the baseline. For this group,
all profiles with the feature of interest are preferred to all

“Formally, voter 7s choices are separable when for all # and %), we
have

Yil(tr, Ty (o, Tog)) = Vit Ty, (fo, T )

where Tj_j and T/, denote two arbitrary vectors of other treat-
ment components.

SCOTT F. ABRAMSON, KORHAN KOCAK, AND ASYA MAGAZINNIK

profiles without that feature, yielding the highest possible
Borda score for the feature of interest and the minimum
possible Borda score for the baseline. Thus, we obtain the
maximum net Borda score a supporter can contribute to
a feature.

Second, we assume that the attribute of interest is
least important for all opponents of that feature, that
is, the respondents who prefer the baseline. When this
is the case, the feature of interest will factor into the re-
spondent’s choice only if the profiles are otherwise iden-
tical. Subject to the constraint that opponents prefer the
baseline, this results in the highest possible Borda score
for the feature and the lowest for the baseline, yielding
the minimum net Borda score an opponent can sub-
tract from a feature. Having calculated the maximum
Borda score for a feature per supporter and opponent,
we can invoke Proposition 1 to calculate the maximum
possible AMCE for a given fraction of opponents and
supporters. Inverting this function yields the lowest pos-
sible fraction of supporters for a given AMCE. The up-
per bound is calculated analogously. Interested readers
can find the details in the proof, where we formally state
and carefully trace the arguments summarized here. We
also provide simple R code to compute these bounds
for given values of m, t, and K in SI Appendix C
(p. XIX).

In Figure 2, we apply this proposition to compute
the bounds for AMCEs of 0.05, 0.10, 0.15, and 0.25 for
a binary feature, plotting the upper and lower bounds of
the proportion of experimental subjects who prefer a bi-
nary feature on the y-axis against the number of poten-
tial candidate profiles that respondents can choose from
on the x-axis. As the figure shows, even for AMCEs of
a fairly large magnitude, it takes fewer than five pos-
sible profiles for these bounds to grow to a range that
is inconclusive about the preference of the majority. Of
course, nearly all conjoint experiments exceed five pos-
sible candidate profiles. For instance, with six attributes
taking two possible values each—still a conservative de-
sign by recent standards—there are already 2° = 64 pos-
sible profiles. Only when the AMCE is extremely large—
an effect size of 0.25, which is rarely achieved by anything
other than controls such as a candidate’s partisanship or
experience—does the bounding exercise ensure a major-
ity preference. Even then, if the attribute of interest were
ternary instead of binary, this would no longer be the case
even at an effect size of 0.25.

In Appendix Table C1 (p. XVIII), we conduct this
exercise for every forced-choice conjoint experiment in
the top three political science journals published between
2016 and the first quarter of 2019. We construct our
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FIGURE 2 Upper and Lower Bounds on Fraction of People Who Prefer a Candidate Feature
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Notes: This figure shows the proportion of respondents who prefer an attribute value over the alternative consistent with an
AMCE 0of 0.05, 0.10, 0.15, and 0.25, respectively, as a function of the number of possible candidate profiles.

bounds for the largest estimated effect presented in each
of these articles. From the eight articles we analyze, only
one, Mummolo (2016), produces bounds that guarantee
a majority preference. In this article, the estimated effect
is quite large (0.30), the attribute of interest is binary, and
the number of possible profiles is the smallest by far of all
the included experiments. In SI Appendix C (p. XVI), we
demonstrate how researchers can exploit the separability
assumption further and use the structure of conjoint data
to compute bounds that are guaranteed to be weakly nar-
rower than those given in Proposition 2. However, when

we incorporate uncertainty estimates, this approach does
not produce sufficiently narrow bounds to change any of
the substantive conclusions in Table C1.

The bounding exercise we propose contains the en-
tire range of preferences that are consistent with a given
AMCE. In other words, the upper and lower bounds
reflect a worst-case scenario for researchers, which is
realized when preference direction and intensity are
highly correlated. Thus, Proposition 2 underscores the
dangers of making statements about aggregate prefer-
ences with so little structure on individual choices.
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FIGURE 3 Distributions of Preferences that Can Generate the Same AMCE
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Notes: This figure plots combinations of proportions of respondents who prefer male to female candidates and correlations
between direction and intensity of male-female preference for AMCEs of 0.05 (left) and 0.10 (right), computed for 15 respondents

and two binary attributes.

Of course, this worst-case scenario may be unlikely.
To show how the correlation between the intensity and
direction of preferences relates to the proportion of
voters who prefer a given candidate feature, we work
through a toy example with two binary attributes and 15
voters, where we are interested in the proportion of voters
with a preference for men over women. Define the inten-
sity of preferences for a feature #; over f, as the absolute
value of the difference between the Borda scores of the
two features. The direction of preferences is simply a bi-
nary indicator for whether voters prefer #; over f,, that
is, 1{Y; (#;, %) = 1}. In Figure 3, we plot the Pearson
correlation coefficient between direction and intensity of
preferences for gender on the x-axis and every possible
proportion of the voters who prefer men over women
that is consistent with a given AMCE on the y-axis,
for AMCEs of 0.05 (the left panel) and 0.10 (the right
panel).!? In the left panel, we see that for an AMCE of
men over women of 0.05, a correlation of less than 0.4

12Specifically, we generate all the combinations (with replacement)
of 15 voters that can be constructed from the eight possible non-
interactive preference orderings for the four candidates given in
Table 2. We use 15 voters because that number is both informa-
tive and computationally feasible, yielding C® (8, 15) = 170, 544
combinations to evaluate. For each possible voter set, we compute
an AMCE of male over female candidates, a proportion of the sam-
ple that prefers male over female candidates, and a correlation of
direction and intensity. Figure 3 displays all of these possibilities
for a given AMCE.

is required to infer a majority preference for men; for
an AMCE of 0.10, all but a correlation of 1 ensures that
the sign of the AMCE indicates the majority preference.
Note, however, that Figure 3 corresponds to the most
charitable case, as pictured for K = 4 in the bounds in
Figure 2. As the number of possible profiles grows to K=
16 (only four binary attributes), even small positive cor-
relations can be sufficient to make the AMCE indicate the
opposite of the majority preference. Thus, Figure 3 illus-
trates a general rule of thumb for researchers: For a pos-
itive (negative) AMCE, a positive (negative) correlation
between respondents’ direction and intensity vectors may
lead to the failure of the AMCE to correspond in sign to
the majority preference. Just how strong that correlation
must be is a function of where the relevant upper/lower
bound is located relative to the 0.5 threshold.
Furthermore, it can be seen in Figure 3 that when the
correlation of direction and intensity is zero, the AMCE
corresponds in sign with the majority preference. Using
the logic underlying Proposition 2, we show that this
holds in general, allowing researchers to assess how the
AMCE performs in the best-case scenario, when there
is no systematic relationship between preference inten-
sity and direction for the feature of interest. When this
is the case—that is, when our expectation about the
importance of an attribute to a respondent does not
change when we learn about the direction of his or her
preference—the sign of the AMCE must correspond to
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the feature preferred by the majority. However, under
these conditions, the AMCE will be smaller in magnitude
than the size of the margin, thus providing a conservative
estimate of that quantity.

Proposition 3. When the direction and intensity of prefer-
ences across respondents are uncorrelated, the AMCE of a
binary attribute has the same sign as the majority prefer-
ence, but it underestimates the size of the margin.

Proof of Proposition 3 closely follows the logic of Propo-
sition 2: When intensity and direction are uncorrelated,
on the net, each supporter contributes as much to a
feature as an opponent contributes to the baseline. As
such, the points contributed by supporters and oppo-
nents cancel out, and the remainder corresponds in sign
to the margin of victory for the feature preferred by the
majority.

How realistic is the assumption of no correlation
between the direction and intensity of attribute prefer-
ences? To answer this, we turn to survey data from the
2016 American National Election Studies (ANES) and
assess the degree to which there is a correlation in the
expressed direction and intensity on a wide range of sur-
vey items. Specifically, the ANES asks about both direc-
tion and intensity of preferences for 22 issue areas; across
these issues, respondents assess both whether they sup-
port or oppose a position and how much importance
they attach to the question. On 17 of these questions—
that is, for the vast majority of the issues in the ANES for
which we have a measure of both direction and inten-
sity of preferences—we find evidence that the support-
ers of a given policy or issue area have a meaningfully
different assessment of its importance than its oppo-
nents. Indeed, the ANES provides strong evidence of
the very dynamic that drives our stylized example: self-
described “feminists” attach much more importance to
this identity than do self-described “anti-feminists.” See
SI Appendix D (p. XX) for a full discussion and results of
this analysis.

We conclude this discussion with one final consider-
ation: What happens when we relax the separability as-
sumption and allow for arbitrary interactions between
feature preferences? For instance, rather than assuming
that voters unconditionally prefer men or women, we
now allow for the possibility that a voter prefers Republi-
can men to Republican women, but Democratic women
to Democratic men. In SI Appendix E (p. XXIV), we
derive a summary statistic for aggregate feature prefer-
ences that captures this more complex, and potentially
more realistic, preference structure, providing the neces-
sary scaffolding for our final result.
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Proposition 4. When separability is relaxed, the bounds on
the fraction of voters who prefer t; over t, are wider for any
given AMCE.

We also show that when separability is relaxed, the pro-
portion of experimental subjects who prefer # to f is
no longer indicative of an electoral advantage. In other
words, without separability, even with tight bounds in-
dicating a majority of respondents preferring # to f,
we cannot conclude that candidates with feature #; will
beat candidates with feature #, in most all-else-equal con-
tests. Furthermore, without separability, individual fea-
ture preferences do not necessarily satisfy transitivity.'?
Put simply, relaxing separability makes the very notion
of a preference over features difficult to pin down from a
theoretical perspective.

Average of Ideal Points

Although the proposed estimator of the AMCE of Hain-
mueller, Hopkins, and Yamamoto (2014) is “model free,”
in this section we demonstrate how it relates to an un-
derlying model of choice. Our purpose in providing this
simple structural interpretation of the AMCE is to illus-
trate from another angle the same aggregation problem
highlighted in the preceding sections, wherein we can-
not disentangle the intensity and direction of individual
preferences. To start, consider two candidates ¢ € {1, 2}
running in contest j who offer platforms x;;. to voter .
A platform x;;. is a vector of policies of length M that
fully characterizes a candidate in contest j. Let b; repre-
sent an M-length vector of voter 7’s preferred policy lo-
cations (e.g., her issue-specific ideal points) and assume
that voters have quadratic utility functions. Thus, voter
7’s utility is maximized when candidate c offers a platform
that exactly matches her preferred policy positions, and
the loss she obtains is a function of the distance between
the candidate’s policies and her ideal platform. Her utility
from Candidate s platform is given by

Ui (xijc) =

It follows that

_(bi_xijc)2+nijc- (1)

Pr(y;ji = 1) = Pr (Ui (xij) > Ui (xi2))
= Pr (—(b,- — xi].l)z i > —(b,- - x:‘jz)z + 7]1‘,;‘2)
=Pr (Mijp —mijp <2 (b: (xijl - xiJ'Z)

/ /
+ xijz Xijp — xijl xifl) (2)

1> A simple example is provided in SI Appendix E (p. XXIV).
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where y;; is a binary indicator that equals 1 when respon-
dent i chooses Candidate 1 in contest j and 0 otherwise.
In SI Appendix F (p. XXVII), we walk through the steps
that relate Equation (2) to a linear regression model es-
timated on data generated from a conjoint experiment,
where x;;; and x;j, are vectors of randomized candidate
attributes that have been discretized into binary indica-
tors with an omitted category. Letting Ax;; represent the
difference between the vectors x;;; and x;j,, and m rep-
resent a given feature or element of this vector, one can
estimate the following regression:

yijl = Z BimAXijm + €ij. (3)

m

The slope, Pim = 2bi,, — 1, gives the change in
probability for individual i of choosing Candidate 1 when
Candidate 1 has feature m and Candidate 2 does not,
holding all their other features constant, and we ob-
tain the AMCE for feature m by averaging f;,, over
individuals.

Under this simple model of choice, the AMCE can
be interpreted as an average of respondents’ ideal points.
The usefulness of the mean voter’s preference, however,
depends upon the particular model of elections that
applied researchers have in mind. As is well known,
the median voter’s preference characterizes the unique
equilibrium in a large number of probabilistic and de-
terministic voting models, and under a broad set of
conditions (Bernhardt, Duggan, and Squintani 2007;
Calvert 1985; Duggan 2006). By contrast, mean voter re-
sults maintain in a limited class of probabilistic voting
models (Hinich 1977; Lin, Enelow, and Dorussen 1999;
Schofield 2007) that require stronger assumptions about
the motivations of candidates, the shape of voters’ utility
functions, and symmetry in the distribution of voter
preferences, the latter of which is akin to our uncor-
related weights assumption.'* Most importantly, these
models require that parties know each voter’s ideal
point and only face uncertainty about voters’ preference
“shocks” or “biases”—additively separable error terms
distributed independently of ideal points. Unfortunately,
political scientists employ conjoint experiments precisely
because we do not know voters’ preferences.'”

For an extensive discussion of necessary and sufficient conditions
for the existence of mean voter equilibria, see Banks and Duggan
(2005).

In another class of probabilistic voting models, candidates face
uncertainty about voters’ ideal points. In these models, convergent
equilibria have candidates placing themselves at the expected posi-
tion of the median voter.

SCOTT F. ABRAMSON, KORHAN KOCAK, AND ASYA MAGAZINNIK

Conclusion

We have shown that the AMCE, the target estimand of
many conjoint experiments, does not support many in-
terpretations ascribed to it by political scientists. A pos-
itive AMCE for a particular candidate feature does not
imply that the majority of respondents prefer that fea-
ture over the baseline. It does not indicate that they pre-
fer a candidate with that feature to a candidate without
it, all else equal. It does not mean that voters are more
likely to elect a candidate with that feature than candi-
dates without it. How, then, should researchers interpret
the AMCE?

First, as shown by Bansak et al. (2022), the AMCE re-
flects the effect of changing an attribute on the expected
vote share, where the average is taken with respect to the
distribution of other attributes. As demonstrated in our
main example, identical expected vote shares can be gen-
erated from a preference distribution that results in a sin-
gle landslide in favor of women and most other contests
resolving in favor of men, as well as from a preference
distribution where female candidates win nearly all elec-
tions. Because it averages over the intensive and exten-
sive margins of voter preferences, this expected vote share
cannot speak to theoretically important questions such as
which feature most voters prefer or which feature would
dominate in most elections.

Second, we have characterized the AMCE as a pref-
erence aggregation mechanism and shown its relation-
ship to the Borda count. Few real-world electoral contests
are decided by Borda rule voting, but a more practical
application of this insight is that it allows us to derive
bounds on the proportion of the experimental sample
that prefers a feature over the alternative, given a particu-
lar AMCE. Our analysis shows that as the number of pos-
sible candidate profiles increases, these bounds quickly
expand to a range that is inconclusive about majority
preferences for magnitudes of the AMCE that most ap-
plied researchers would reasonably encounter.

Third, we have demonstrated that the AMCE can
be thought of as an average of the direction and inten-
sity of voters’ preferences, or an average of ideal points.
Where might this interpretation be of interest? One area
is in evaluating hypotheses generated by models of prob-
abilistic voting. Notably, these models require strong ad-
ditional assumptions for the mean voter’s preference to
be relevant in characterizing equilibria. Perhaps because
of this, we are unaware of a single study that has used a
conjoint experiment toward this end.

In general, the problems of interpretation we de-
scribe arise when there exists a minority that intensely
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prefers a feature and a majority that feels the opposite,
but less strongly. The larger the correlation between
direction and intensity, the more misleading the AMCE
with respect to quantities of interest in a one-person,
one-vote setting. Thus, if the researcher has good reasons
to believe that her experimental sample has uncorrelated
directions and intensities of preferences, then she can
proceed with a majoritarian interpretation of her results;
that said, correlations of the sort we describe pervade
areas of interest to political scientists, from gender parity
in elected office (Teele, Kalla, and Rosenbluth 2018)
to who should be favored by the nation’s immigration
policy (Hainmueller and Hopkins 2015). Moreover, note
that while our running example concerns voting in a
majoritarian context, our critique applies more broadly
to any attempt to summarize a population’s preferences.
Moving from ill-defined claims such as “Population
X prefers A to B” to concrete statements concerning
any proportion of a population requires buttressing
the AMCE with very strong assumptions about the
distribution of preferences—or developing alternative
estimators altogether.

How should applied researchers proceed? Conjoint
analysis remains most useful for questions where the av-
erage preference is of interest. However, scholars seek-
ing answers to majoritarian questions may find them-
selves in a bind. On the one hand, we have shown
through our bounding exercise that if they want to inter-
pret their findings with respect to a majority preference,
then they should restrict themselves to conservative ran-
domization schemes that limit the number of attributes
and potential candidate profiles. Only with a conserva-
tive design and a small number of binary attributes is
there hope of producing sufficiently small bounds on an
estimated AMCE to conclusively reflect a majority pref-
erence. On the other hand, because the AMCE is depen-
dent upon the particular features included in an experi-
ment, for a result to be externally valid, researchers must
include the full set of theoretically relevant attributes
in their randomization scheme. That is, for a conjoint
experiment to provide substantively relevant results,
researchers must get the distribution of randomized
attributes exactly right. Unfortunately, it may prove diffi-
cult to construct a “Goldilocks” experimental design that
serves both goals.

Recently, researchers have begun developing tools for
recovering relevant quantities of interest from conjoint
and similar designs. Abramson et al. (2020) show that
under the assumption of conditional preference homo-
geneity, researchers can use machine learning tools to re-
cover quantities such as the proportion of voters with
a strict preference for candidate features and to gener-
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ate individual-level predictions for out-of-sample elec-
toral contests. Future avenues for research on preference
elicitation in political science should develop experimen-
tal designs that can directly recover relevant quantities
of interest. For example, there exist experimental and
survey designs that can obtain the individual-level esti-
mates of preference intensities (Cavaillé, Chen, and van
Der Straeten 2019; Wiswall and Zafar 2018). Further de-
veloping these tools will allow researchers to make more
precise—and theoretically grounded—statements about
voters’ preferences.
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